Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Signal Behav ; 19(1): 2331357, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38564424

RESUMEN

Ornamental crops particularly cut flowers are considered sensitive to heavy metals (HMs) induced oxidative stress condition. Melatonin (MLT) is a versatile phytohormone with the ability to mitigate abiotic stresses induced oxidative stress in plants. Similarly, signaling molecules such as hydrogen sulfide (H2S) have emerged as potential options for resolving HMs related problems in plants. The mechanisms underlying the combined application of MLT and H2S are not yet explored. Therefore, we evaluated the ability of individual and combined applications of MLT (100 µM) and H2S in the form of sodium hydrosulfide (NaHS), a donor of H2S, (1.5 mM) to alleviate cadmium (Cd) stress (50 mg L-1) in stock (Matthiola incana L.) plants by measuring various morpho-physiological and biochemical characteristics. The results depicted that Cd-stress inhibited growth, photosynthesis and induced Cd-associated oxidative stress as depicted by excessive ROS accumulation. Combined application of MLT and H2S efficiently recovered all these attributes. Furthermore, Cd stress-induced oxidative stress markers including electrolyte leakage, malondialdehyde, and hydrogen peroxide are partially reversed in Cd-stressed plants by MLT and H2S application. This might be attributed to MLT or H2S induced antioxidant plant defense activities, which effectively reduce the severity of oxidative stress indicators. Overall, MLT and H2S supplementation, favorably regulated Cd tolerance in stock; yet, the combined use had a greater effect on Cd tolerance than the independent application.


Asunto(s)
Brassicaceae , Sulfuro de Hidrógeno , Melatonina , Sulfuros , Sulfuro de Hidrógeno/farmacología , Cadmio/toxicidad , Melatonina/farmacología , Estrés Oxidativo , Antioxidantes/metabolismo , Brassicaceae/metabolismo , Peróxido de Hidrógeno
2.
BMC Complement Med Ther ; 24(1): 86, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355544

RESUMEN

BACKGROUND: This ethnobotanical study in Dunyapur, District Lodhran, Pakistan, focuses on traditional medicinal knowledge, exploring 41 plants across 28 families. The research involves 496 informants from diverse backgrounds, including farmers, herbalists, housewives, teachers, and shopkeepers. The prevalence of herbs (68%) aligns with their accessibility and rapid regrowth, shaping the local medicinal landscape. The study investigates socio-demographic features, emphasizing the importance of considering the community's diverse perspectives. METHODS: The research employs quantitative ethnobotanical data analysis, introducing various indices like PPV, FUV, FIV, RFC, UV, and RI. The analysis of plant growth habits underscores the dominance of herbs, and the method of preparation evaluation identifies decoction as the most common (23%). Leaves (27%) are the most utilized plant part, and Resedaceae stands out with the highest FUV (0.38). FIV highlights the ecological and cultural significance of Poaceae, Boraginaceae, Fabaceae, and Solanaceae. RESULTS: The RFC values range from 0.016 to 0.032, with Cucumis melo having the highest value (0.032), indicating its frequent citation and cultural significance. The study reveals specific plants like Melia azedarach, Peganum harmala and Salvadora oleoides with high PR values for skin issues, reflecting their widespread acceptance and effectiveness. Oligomeris linifolia emerges with the highest UV (0.38), emphasizing its greater significance in local traditional practices. Leptadenia pyrotechnica records the highest RI (9.85), underlining its exceptional importance in the community's traditional pharmacopeia. CONCLUSION: The findings offer a holistic understanding of ethnobotanical knowledge in Dunyapur, emphasizing the role of local contexts and ecological factors in shaping traditional plant uses. The study contributes valuable insights into the diverse practices within the community, laying the foundation for sustainable integration of traditional knowledge into broader healthcare frameworks.


Asunto(s)
Plantas Medicinales , Humanos , Etnobotánica/métodos , Dieta , Pakistán , Piel
3.
Front Plant Sci ; 14: 1144319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123831

RESUMEN

Introduction: Osmoprotectant supplementation can be used as a useful approach to enhance plant stress tolerance. However, the effect of silymarin and clove fruit extract (CFE) on wheat plants grown under cadmium (Cd) stress has not been studied. Methods: Wheat seeds were planted in plastic pots filled with ions-free sand. A ½-strength Hoagland's nutrient solution was used for irrigation. Pots were treated with eight treatments thirteen days after sowing: 1) Control, 2) 0.5 mM silymarin foliar application [silymarin], 3) 2% CFE foliar application [CFE], 4) CFE enriched with silymarin (0.24 g silymarin L-1 of CFE) [CFE-silymarin], 5) Watering wheat seedlings with a nutritious solution of 2 mM Cd [Cd]. 6) Cadmium + silymarin, 7) Cadmium + CFE, and 8) Cadmium + CFE-silymarin. The experimental design was a completely randomized design with nine replicates. Results and discussion: The Cd stress decreased grain yield, shoot dry weight, leaf area, carotenoids, chlorophylls, stomatal conductance, net photosynthetic rate, transpiration rate, membrane stability index, nitrogen, phosphorus, and potassium content by 66.9, 60.6, 56.7, 23.8, 33.5, 48.1, 41.2, 48.7, 42.5, 24.1, 39.9, and 24.1%, respectively. On the other hand, Cd has an Application of CFE, silymarin, or CEF-silymarin for wheat plants grown under Cd stress, significantly improved all investigated biochemical, morphological, and physiological variables and enhanced the antioxidant enzyme activities. Applying CFE and/or silymarin enhanced plant tolerance to Cd stress more efficiently. Our findings suggest using CFE-silymarin as a meaningful biostimulator for wheat plants to increase wheat plants' tolerance to Cd stress via enhancing various metabolic and physiological processes.

4.
Microorganisms ; 11(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37110284

RESUMEN

Many farmers' incomes in developing countries depend on the cultivation of major crops grown in arid and semi-arid regions. The agricultural productivity of arid and semi-arid areas primarily relies on chemical fertilizers. The effectiveness of chemical fertilizers needs to improve by integration with other sources of nutrients. Plant growth-promoting bacteria can solubilize nutrients, increase plant nutrient uptake, and supplement chemical fertilizers. A pot experiment evaluated the promising plant growth-promoting bacterial strain's effectiveness in promoting cotton growth, antioxidant enzymes, yield, and nutrient uptake. Two phosphate solubilizing bacterial strains (Bacillus subtilis IA6 and Paenibacillus polymyxa IA7) and two zinc solubilizing bacterial strains (Bacillus sp. IA7 and Bacillus aryabhattai IA20) were coated on cotton seeds in a single as well as co-inoculation treatments. These treatments were compared with uninoculated controls in the presence and absence of recommended chemical fertilizer doses. The results showed the co-inoculation combination of Paenibacillus polymyxa IA7 and Bacillus aryabhattai IA20 significantly increased the number of bolls, seed cotton yield, lint yield, and antioxidants activities, including superoxide dismutase, guaiacol peroxidase, catalase, and peroxidase. Co-inoculation combination of Bacillus subtilis IA6 and Bacillus sp. IA16 promoted growth attributes, including shoot length, root length, shoot fresh weight, and root fresh weight. This co-inoculation combination also increased soil nutrient content. At the same time, Paenibacillus polymyxa IA7 + Bacillus aryabhattai IA20 increased nutrient uptake by plant shoots and roots compared.

5.
Plants (Basel) ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050205

RESUMEN

The therapeutical attributes of silver nanoparticles (Ag-NPs) in both conditions (in vitro and in vivo) have been investigated using different plants. This study focused on the green chemistry approach that was employed to optimize the synthesis of silver nanoparticles (AgNPs) using Cleome brachycarpa aqueous extract as a reducing and stabilizing agent. The characterization of obtained CB-AgNPs was undertaken using UV-visible spectroscopy, Atomic-force microscopy (AFM), Fourier-Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis. Results suggest that CB-AgNPs synthesized via stirring produced small-sized particles with more even distribution. The synthesized silver nanoparticles were spherical with a 20 to 80 nm size range. In vitro studies were used to analyze antioxidant, antidiabetic, and cytotoxic potential under different conditions. The results also indicated that CB-AgNPs may have significant potential as an antidiabetic in low concentrations, but also exhibited potential antioxidant activity at different concentrations. Moreover, the anticancer activity against the breast cell line (MCF-7) with IC50 reached up to 18 µg/mL. These results suggest that green synthesized silver nanoparticles provide a promising phytomedicine for the management of diabetes and cancer therapeutics.

6.
Front Plant Sci ; 13: 956249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452105

RESUMEN

Environmental stresses, including heavy metals accumulation, have posed an immense threat to the agricultural ecosystem, leading to a reduction in the yield of crucial crops. In this study, we evaluated the role of quercetin (Qu) in the alleviation of chromium (Cr) stress in Fenugreek (Trigonella corniculata L.). Different levels of Qu were prepared during the experiment, i.e., 15, 25, and 40 µM. For Cr toxification in potted soil, potassium chromate (K2Cr2O7) was used. Cr toxification reduced growth of T. corniculata seedlings. Cr stress also reduced fiber, ash, moisture, carbohydrate, protein, fats, and flavonoid contents. However, seed priming with Qu improved growth and physiochemical characteristics of T. corniculata seedlings grown in normal and Cr-contaminated soil. Seed priming with Qu escalated intercellular CO2 concentration, stomatal conductance, transpiration rate, and photosynthetic rate in T. corniculata seedlings. Application of Qu also increased the activity of antioxidative enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) in T. corniculata seedlings exposed to normal and Cr-contaminated soil. Application of Qu incremented the activity of SOD, POD, CAT, and APX, which were increased by 28, 22, 29, and 33%, respectively, in T. corniculata grown in Cr-toxic soil as compared to control treatment. Chromium stress alleviation was credited to the enhanced activity of the antioxidative defensive system in T. corniculata seedlings. It is proposed that Qu supplementation can be used to mitigate other abiotic stresses in plants.

7.
PLoS One ; 17(6): e0267939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35679266

RESUMEN

Plant growth and productivity are limited by the severe impact of salt stress on the fundamental physiological processes. Silicon (Si) supplementation is one of the promising techniques to improve the resilience of plants under salt stress. This study deals with the response of exogenous Si applications (0, 2, 4, and 6 mM) on growth, gaseous exchange, ion homeostasis and antioxidant enzyme activities in spinach grown under saline conditions (150 mM NaCl). Salinity stress markedly reduced the growth, physiological, biochemical, water availability, photosynthesis, enzymatic antioxidants, and ionic status in spinach leaves. Salt stress significantly enhanced leaf Na+ contents in spinach plants. Supplementary foliar application of Si (4 mM) alleviated salt toxicity, by modulating the physiological and photosynthetic attributes and decreasing electrolyte leakage, and activities of SOD, POD and CAT. Moreover, Si-induced mitigation of salt stress was due to the depreciation in Na+/K+ ratio, Na+ ion uptake at the surface of spinach roots, and translocation in plant tissues, thereby reducing the Na+ ion accumulation. Foliar applied Si (4 mM) ameliorates ionic toxicity by decreasing Na+ uptake. Overall, the results illustrate that foliar applied Si induced resistance against salinity stress in spinach by regulating the physiology, antioxidant metabolism, and ionic homeostasis. We advocate that exogenous Si supplementation is a practical approach that will allow spinach plants to recover from salt toxicity.


Asunto(s)
Salinidad , Silicio , Antioxidantes/metabolismo , Fertilización , Silicio/metabolismo , Silicio/farmacología , Sodio/metabolismo , Spinacia oleracea/metabolismo
8.
Front Plant Sci ; 13: 879545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665186

RESUMEN

There are many technological innovations in the field of agriculture to improve the sustainability of farmed products by reducing the chemicals used. Uses of biostimulants such as plant extracts or microorganisms are a promising process that increases plant growth and the efficient use of available soil resources. To determine the effects of some biostimulants' treatments on the photosynthetic pigments and biochemicals composition of zucchini plants, two experiments were conducted in 2019 and 2020 under greenhouse conditions. In this work, the effects of beneficial microbes (Trichoderma viride and Pseudomonas fluorescens), as well as three extracts from Eucalyptus camaldulensis leaf extract (LE), Citrus sinensis LE, and Ficus benghalensis fruit extract (FE) with potassium silicate (K2SiO3) on productivity and biochemical composition of zucchini fruits, were assessed as biostimulants. The results showed that E. camaldulensis LE (4,000 mg/L) + K2SiO3 (500 mg/L) and T. viride (106 spore/ml) + K2SiO3 (500 mg/L) gave the highest significance yield of zucchini fruits. Furthermore, the total reading response of chlorophylls and carotenoids was significantly affected by biostimulants' treatments. The combination of K2SiO3 with E. camaldulensis LE increased the DPPH scavenging activity and the total phenolic content of zucchini fruits, in both experiments. However, the spraying with K2SiO3 did not observe any effects on the total flavonoid content of zucchini fruits. Several phenolic compounds were identified via high-performance liquid chromatography (HPLC) from the methanol extracts of zucchini fruits such as syringic acid, eugenol, caffeic acid, pyrogallol, gallic acid, ascorbic acid, ferulic acid, α-tocopherol, and ellagic acid. The main elemental content (C and O) analyzed via energy-dispersive X-ray spectroscopy (EDX) of leaves was affected by the application of biostimulants. The success of this work could lead to the development of cheap and easily available safe biostimulants for enhancing the productivity and biochemical of zucchini plants.

9.
Sci Rep ; 12(1): 7167, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504974

RESUMEN

The sustainability of the rice-wheat system is threatened due to the deterioration of soil health and emergence of new challenges of climate change caused by low nutrient use efficiency and large scale burning of crop residues. The conservation agriculture based on tillage intensity, crop residue retention and raising green manuring (GM) crops during the intervening period between wheat harvest and rice establishment offers opportunities for restoration of phosphorus (P) dynamics and stimulate phosphatase activities within the macro-and micro-aggregates. Phosphorus and phosphatase activities in the soil aggregates affected by different residue management practices remain poorly understood. Thus, soil samples were obtained after a five-year field experiment to identify the effect of tillage, green manure and residue management on aggregate-associated phosphorus fractions. Four main plot treatments in rice included combination of wheat straw and GM were conventional till puddled transplanted rice (PTR) with no wheat straw (PTRW0), PTR with 25% wheat stubbles retained (PTRW25), PTR without wheat straw and GM (PTRW0 + GM), and PTR with wheat stubbles and GM (PTRW25 + GM). Three sub-plots treatments in the successive wheat crop were conventional tillage (CT) with rice straw removed (CTWR0), zero tillage (ZT) with rice straw removed (ZTWR0) and ZT with rice straw retained as surface mulch (ZTWR100). Results of the present study revealed significantly higher phosphorus fractions (HCl-P, NaHCO3-Pi and NaOH-Po) in treatment PTRW25 + GM and ZTWR100 compared with PTRW0/CTWR0 within both macro- and micro-aggregates. The total phosphorus (P), available P, alkaline phosphatase and phytin-P were significantly higher under ZTWR100 than CTWR0. The principal component analysis identified NaOH-Po, NaHCO3-Pi and HCl-P as the dominant and reliable indicators for evaluating P transformation within aggregates under conservation agriculture-based practices.


Asunto(s)
Oryza , Estiércol , Monoéster Fosfórico Hidrolasas , Fósforo/análisis , Hidróxido de Sodio/análisis , Suelo/química , Triticum
10.
Environ Pollut ; 307: 119413, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35525515

RESUMEN

Current research reveals the positive role of iron oxide nanoparticles (IONPs) and selenium (Se) in extenuation of arsenic (As) induced toxicity in Cucumis melo. C. melo plants grown in As spiked soil (20 mg kg-1 As) showed reduced growth, chlorophyll (Chl) content, photosynthetic rate, stomatal conductivity and transpiration. On the other hand, the alone applications of IONPs or Se improved growth and physiochemical parameters of C. melo plants. Additionally, exogenous application IONPs and Se synergistically improved the activity of antioxidative enzymes and glyoxalase system in C. melo plants. In addition, the collective treatment of IONPs and Se reduced As uptake, enhanced rate of photosynthesis and increased gas exchange attributes of C. melo plants under As stress. Interactive effect of IONPs and Se regulated reduced glutathione (GSH), oxidized glutathione (GSSG) and ascorbate (AsA) content in C. melo plants exposed to As-contaminated Soil. IONPs and Se treatment also regulated expression of respiratory burst oxidase homologue D (RBOHD) gene, chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR). Therefore, the combined treatment of IONPs and Se may enhance the growth of crop plants by alleviating As stress.


Asunto(s)
Arsénico , Cucumis melo , Selenio , Antioxidantes/metabolismo , Arsénico/toxicidad , Clorofila/metabolismo , Suplementos Dietéticos , Expresión Génica , Glutatión/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Estrés Oxidativo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fotosíntesis , Protoclorofilida/farmacología , Selenio/farmacología , Suelo
11.
Sci Rep ; 12(1): 6363, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35430590

RESUMEN

The current study was performed on 8 years old "Succary" pomegranate cultivar (Punica granatum L.) during the 2019 and 2020 seasons. One hundred pomegranate trees were chosen and sprayed three times at the beginning of flowering, full bloom, and 1 month later with the following treatments: water as control, 0.025, 0.05 and 0.1 mg/L Se; 5 mL/L, 7.5 and 10 mL/L Ag NPs, and 0.5, 1 and 2 mg/L K2Si2O5. The results showed that spraying of SE, Ag NPs, and K2Si2O5 ameliorated the shoot length, diameter, leaf chlorophyll content, set of fruiting percentage, and fruit yield per tree and hectare compared to control through studying seasons. Moreover, they improved the fruit weight, length, and diameter, as well as total soluble solids, total, reduced, and non-reduced sugars percent, while they lessened the juice acidity percentage compared to control. The most obvious results were noticed with Se at 0.1 mg/L, Ag NPs at 10 mL/L, and K2Si2O5 and K2Si2O5 in both experimental seasons over the other applied treatments. By HPLC analysis, peel extracts showed the presence of several bioactive compounds of catechol, syringic acid, p-coumaric acid, benzoic acid, caffeic acid, pyrogallol, gallic acid, ferulic acid, salicylic acid, cinnamic acid, and ellagic acid. The extracts applied to Melia azedarach wood showed promising antifungal activity against Rhizoctonia solani and were considered wood-biofingicides.


Asunto(s)
Fungicidas Industriales , Granada (Fruta) , Selenio , Sequías , Frutas , Fungicidas Industriales/farmacología , Extractos Vegetales/farmacología , Potasio , Silicatos/farmacología , Árboles
12.
PLoS One ; 17(4): e0265654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421099

RESUMEN

The appraisal of foliar treatment of iron (Fe) and salicylic acid (SA) on plant under artificial magnetism is very crucial in understanding its impact on growth and development of plants. The present study was designed to document the potential role of Fe and SA on pea (Pisum sativum L.) Matore variety exposed to different magnetism treatments (geomagnetism and artificial magnetism). Thus a pot experiment was conducted using Completely Randomized Design under factorial with three replicates. Various artificial magnetic treatment were applied in pots prior to sowing. Further, 15 days germinated pea seedlings were foliarly supplemented with 250 ppm Fe and 250µM SA, moreover after 20 days of foliar fertilization plants were harvested to analyze and record various morpho-physiological attributes. Data elucidate significant variations in pea plants among different treatments. Artificial magnetism treatments in combination with foliar application of Fe and SA significantly improved various growth attributes (root and shoot length, fresh and dry weights of root and shoot, leaf area), photosynthetic pigments (Chl a, b and carotenoids) and the contents of soluble sugars. However, oxidative stress (H2O2 and MDA) enhanced under different magnetism treatment but foliar application of Fe and SA hampered the production of reactive oxygen species thereby limiting the concentration of H2O2 and MDA in plant tissues. Furthermore the accumulation of nutrients (iron, potassium and nitrate) profoundly increased under artificial magnetism treatment specifically under Fe and SA foliar treatment excluding nitrate where Fe foliar treatment tend to limit nitrate in plant. Consequently, the present research interestingly highlights progressive role of Fe and SA foliar treatment on pea plants under artificial magnetism. Thus, foliar supplementation may be suggested for better growth and development of plants combined with magnetic treatments.


Asunto(s)
Pisum sativum , Ácido Salicílico , Peróxido de Hidrógeno , Hierro/farmacología , Nitratos , Ácido Salicílico/farmacología
13.
PLoS One ; 17(4): e0266753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421141

RESUMEN

An experiment on the use of farmyard manure and biofertilizer along with application of chemical phosphorus was conducted to assess the impact of differential doses of phosphorus, farmyard manure and consortium biofertilizer application on the development, yield and phosphorus uptake during the year 2018 and 2019. The impact of different treatments was recorded on the plant height, dry matter partition, yield and yield attributes, phosphorus uptake and soil phosphorus availability using standard methods. The data revealed significant improvement in yield, yield attributes, phosphorus uptake and soil phosphorus availability. The integration of farmyard manure and biofertilizer with 60 kg ha-1 SSP (single superphosphate) has improved the black gram yield by 7.4% and 3.28% respectively over the use of 60 SSP alone. The phosphorus uptake in black gram with application of Farm yard manure and biofertilizer along with 60 kg ha-1 SSP has improved the uptake by 7.18% and 2.51% respectively over the use of 60 kg ha-1 SSP alone. The results highlight the need of integrated application of farm yard manure, biofertilizer for sustainable production of black gram in the region.


Asunto(s)
Estiércol , Vigna , Fertilizantes/análisis , Fósforo , Suelo
14.
Sci Rep ; 11(1): 19027, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561493

RESUMEN

In the present study, and for the waste valorization, Moringa oleifera seeds-removed ripened pods (SRRP) were used for papersheet production and for the extraction of bioactive compounds. Fibers were characterized by SEM-EDX patterns, while the phytoconstituents in ethanol extract was analyzed by HPLC. The inhibition percentage of fungal mycelial growth (IFMG) of the treated Melia azedarach wood with M. oleifera SRRP extract at the concentrations of 10,000, 20,000, and 30,000 µg/mL against the growth of Rhizoctonia solani and Fusarium culmorum was calculated and compared with fluconazole (25 µg). The produced papersheet was treated with the ethanol extract (4000, 2000, and 1000 µg/mL) and assayed for its antibacterial activity against Agrobacterium tumefaciens, Erwinia amylovora, and Pectobacterium atrosepticum by measuring the inhibition zones and minimum inhibitory concentrations (MICs). According to chemical analysis of M. oleifera SRRP, benzene:alcohol extractives, holocellulose, lignin, and ash contents were 7.56, 64.94, 25.66 and 1.53%, respectively, while for the produced unbleached pulp, the screen pulp yield and the Kappa number were 39% and 25, respectively. The produced papersheet showed tensile index, tear index, burst index, and double fold number values of 58.8 N m/g, 3.38 mN m2/g, 3.86 kPa m2/g, and 10.66, respectively. SEM examination showed that the average fiber diameter was 16.39 µm, and the mass average of for elemental composition of C and O by EDX were, 44.21%, and 55.79%, respectively. The main phytoconstituents in the extract (mg/100 g extract) by HPLC were vanillic acid (5053.49), benzoic acid (262.98), naringenin (133.02), chlorogenic acid (66.16), and myricetin (56.27). After 14 days of incubation, M. oleifera SRRP extract-wood treated showed good IFMG against R. solani (36.88%) and F. culmorum (51.66%) compared to fluconazole, where it observed 42.96% and 53.70%, respectively. Moderate to significant antibacterial activity was found, where the minimum inhibitory concentration (MIC) values were 500, 650, and 250 µg/mL against the growth of A. tumefaciens, E. amylovora, and P. atrosepticum respectively, which were lower than the positive control used (Tobramycin 10 µg/disc). In conclusion, M. oleifera SRRP showed promising properties as a raw material for pulp and paper production as well as for the extraction of bioactive compounds.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Extracción Líquido-Líquido/métodos , Moringa oleifera/química , Papel , Extractos Vegetales/química , Extractos Vegetales/farmacología , Agrobacterium tumefaciens/efectos de los fármacos , Ácido Benzoico , Farmacorresistencia Microbiana , Erwinia amylovora/efectos de los fármacos , Flavanonas , Fusarium/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Rhizoctonia/efectos de los fármacos , Semillas , Ácido Vanílico
15.
Environ Pollut ; 290: 117953, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438168

RESUMEN

Hydrogen sulfide (H2S) has emerged as a potential gasotransmitter in plants with a beneficial role in stress amelioration. Despite the various known functions of H2S in plants, not much information is available to explain the associative role of molybdenum (Mo) and hydrogen sulfide (H2S) signaling in plants under arsenic toxicity. In view to address such lacunae in our understanding of the integrative roles of these biomolecules, the present work attempts to decipher the roles of Mo and H2S in mitigation of arsenate (AsV) toxicity in faba bean (Vicia faba L.) seedlings. AsV-stressed seedlings supplemented with exogenous Mo and/or NaHS treatments (H2S donor) showed resilience to AsV toxicity manifested by reduction of apoptosis, reactive oxygen species (ROS) content, down-regulation of NADPH oxidase and GOase activity followed by upregulation of antioxidative enzymes in leaves. Fluorescent localization of ROS in roots reveals changes in its intensity and spatial distribution in response to MO and NaHS supplementation during AsV stress. Under AsV toxicity conditions, seedlings subjected to Mo + NaHS showed an increased rate of nitrogen metabolism evident by elevation in nitrate reductase, nitrite reductase and glutamine synthetase activity. Furthermore, the application of Mo and NaHS in combination positively upregulates cysteine and hydrogen sulfide biosynthesis in the absence and presence of AsV stress. Mo plus NaHS-supplemented seedlings exposed to AsV toxicity showed a substantial reduction in oxidative stress manifested by reduced ELKG, lowered MDA content and higher accumulation of proline in leaves. Taken together, the present findings provide substantial evidence on the synergetic role of Mo and H2S in mitigating AsV stress in faba bean seedlings. Thus, the application of Mo and NaHS reveals their agronomic importance to encounter heavy metal stress for management of various food crops.


Asunto(s)
Arsénico , Sulfuro de Hidrógeno , Vicia faba , Arsénico/toxicidad , Cisteína , Molibdeno/toxicidad , Nitrógeno , Plantones
16.
Plants (Basel) ; 10(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209682

RESUMEN

BACKGROUND: Trees are good sources of bioactive compounds as antifungal and antioxidant activities. METHODS: Management of six molecularly identified Fusarium oxysporum isolates (F. oxy 1, F. oxy 2, F. oxy 3, F. oxy 4, F. oxy 5 and F. oxy 6, under the accession numbers MW854648, MW854649, MW854650, MW854651, and MW854652, respectively) was assayed using four extracts from Conium maculatum leaves, Acacia saligna bark, Schinus terebinthifolius wood and Ficus eriobotryoides leaves. All the extracts were analyzed using HPLC-VWD for phenolic and flavonoid compounds and the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and ß-carotene-linoleic acid (BCB) bleaching assays. RESULTS: In mg/kg extract, the highest amounts of polyphenolic compounds p-hydroxy benzoic, benzoic, gallic, and rosmarinic acids, with 444.37, 342.16, 311.32 and 117.87, respectively, were observed in C. maculatum leaf extract; gallic and benzoic acids with 2551.02, 1580.32, respectively, in A. saligna bark extract; quinol, naringenin, rutin, catechol, and benzoic acid with 2530.22, 1224.904, 798.29, 732.28, and 697.73, respectively, in S. terebinthifolius wood extract; and rutin, o-coumaric acid, p-hydroxy benzoic acid, resveratrol, and rosmarinic acid with 9168.03, 2016.93, 1009.20, 1156.99, and 574.907, respectively, in F. eriobotryoides leaf extract. At the extract concentration of 1250 mg/L, the antifungal activity against the growth of F. oxysporum strains showed that A. saligna bark followed by C. maculatum leaf extracts had the highest inhibition percentage of fungal growth (IPFG%) against F. oxy 1 with 80% and 79.5%, F. oxy 2 with 86.44% and 78.9%, F. oxy 3 with 86.4% and 84.2%, F. oxy 4 with 84.2, and 82.1%, F. oxy 5 with 88.4% and 86.9%, and F. oxy 6 with 88.9, and 87.1%, respectively. For the antioxidant activity, ethanolic extract from C. maculatum leaves showed the lowest concentration that inhibited 50% of DPPH free radical (3.4 µg/mL). Additionally, the same extract observed the lowest concentration (4.5 µg/mL) that inhibited BCB bleaching. CONCLUSIONS: Extracts from A. saligna bark and C. maculatum leaves are considered potential candidates against the growth of F. oxysporum isolates-a wilt pathogen-and C. maculatum leaf as a potent antioxidant agent.

17.
Microb Pathog ; 158: 105107, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34303810

RESUMEN

Medicinal and aromatic higher plants are sustainable resources for natural product compounds, including essential oils, phenolics, flavonoids, alkaloids, glycosides, and saponins. Extractives and essential oils as well as their bioactive compounds have many uses due to their antimicrobial, anticancer, and antioxidant properties as well as application in food preservation. These natural compounds have been reported in many works, for instance biofungicide with phenolic and flavonoid compounds being effective against mold that causes discoloration of wood. Additionally, the natural extracts from higher plants can be used to mediate the synthesis of nanoparticle materials. Therefore, in this review, we aim to promote and declare the use of natural products as environmentally eco-friendly bio-agents against certain pathogenic microbes and make recommendations to overcome the extensive uses of conventional pesticides and other preservatives.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Aceites Volátiles , Antibacterianos , Antiinfecciosos/farmacología , Antioxidantes , Extractos Vegetales/farmacología
18.
Plant Physiol Biochem ; 159: 211-225, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385704

RESUMEN

Present investigation reports the role of calcium (Ca2+) and hydrogen sulfide (H2S) crosstalk associated with Vigna radiata seedlings subjected to K+ deficient conditions under short-term (24 h) and long-term (72 h) NaCl stress. Perusal of the data reveals that under short-term NaCl stress an initial decline in K+ level led to the elevation in Ca2+ and H2S levels along with improvement in antioxidant system and reduction in reactive oxygen species (ROS) production. Under long-term NaCl stress a further decline in K+ content was deleterious that led to a lower K+/Na+ ratio. This was followed by reduction in antioxidant system along with excessive accumulation of ROS and methylglyoxal content, and increased membrane damage. However, supplementation of the seedling roots with Ca2+ enhanced biosynthesis of H2S through enhancing cysteine pool. The present findings suggest that synergistic action of Ca2+ and H2S induced the activity of H+-ATPase that created H+ gradient which in turn induced Na+/H+ antiport system that accelerated K+ influx and Na+ efflux. All of these together contributed to a higher K+/Na+ ratio, activation of antioxidative defense system, and maintenance of redox homeostasis and membrane integrity in Ca2+-supplemented stressed seedlings. Role of Ca2+ and H2S in the regulation of Na+/H+ antiport system was validated by the use of sodium orthovanadate (plasma membrane H+-ATPase inhibitor), tetraethylammonium chloride (K+ channel blocker), and amiloride (Na+/H+ antiporter inhibitor). Application of Ca2+-chelator EGTA (ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) and H2S scavenger hypotaurine abolished the effect of Ca2+, suggesting the involvement of Ca2+ and H2S in the alleviation of NaCl stress. Moreover, use of EGTA and HT also substantiates the downstream functioning of H2S during Ca2+-mediated regulation of plant adaptive responses to NaCl stress. To sum up, present findings reveal the association of Ca2+ and H2S signaling in the regulation of ion homeostasis and antioxidant defense during K+-deficient NaCl stress.


Asunto(s)
Calcio , Sulfuro de Hidrógeno , Raíces de Plantas , Vigna , Antioxidantes/metabolismo , Calcio/metabolismo , Sulfuro de Hidrógeno/metabolismo , Transporte Iónico , Raíces de Plantas/fisiología , Potasio/metabolismo , Estrés Salino/fisiología , Cloruro de Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vigna/fisiología
19.
Front Plant Sci ; 12: 809183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154205

RESUMEN

Cadmium (Cd+2) is a potential and widespread toxic environmental pollutant, mainly derived from a rapid industrial process that has inhibitory effects on growth, physiological, and biochemical attributes of various plant species, including medicinal plants such as Silybum marianum L. Gaertn commonly known as milk thistle. Plant signaling molecules, when applied exogenously, help to enhance/activate endogenous biosynthesis of potentially important signaling molecules and antioxidants that boost tolerance against various abiotic stresses, e.g., heavy metal stress. The present study documented the protective role of salicylic acid (SA;0.25 µM) and hydrogen peroxide (H2O2; 10 µM) priming, foliar spray, and combinational treatments in reducing Cd+2 toxicity (500 µM) in milk thistle grown at two diverse ecological zones of Balochistan Province of Pakistan i.e., Quetta (Qta) and Turbat (Tbt). The morpho-physiological and biochemical attributes of milk thistle were significantly affected by Cd+2 toxicity; however, priming and foliar spray of SA and H2O2 significantly improved the growth attributes (root/shoot length, leaf area, and root/shoot fresh and dry weight), photosynthetic pigments (Chl a, b, and carotenoids) and secondary metabolites (Anthocyanin, Soluble phenolics, and Tannins) at both altitudes by suppressing the negative impact of Cd+2. However, the oxidative damage parameters, i.e., MDA and H2O2, decreased astonishingly under the treatment of signaling molecules, thereby protecting membrane integrity under Cd+2 stress. The morphological variations were profound at the low altitude (Tbt) as compared to the high altitude (Qta). Interestingly, the physiological and biochemical attributes at both altitudes improved under SA and H2O2 treatments, thus hampered the toxic effect of Cd+2. These signaling compounds enhanced tolerance of plants under heavy metal stress conditions with the consideration of altitudinal, and ambient temperature variations remain to be the key concerns.

20.
Insects ; 11(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158029

RESUMEN

A trend towards environmentally friendly chemicals for use in termite management has been occurring globally. This study examined three naturally occurring plant extracts from Lavandula latifolia (Spike lavender), Origanum vulgare (Marjorum), and Syzygium aromaticum (Clove) against the termite Microcerotermes eugnathus. Plant extract results were compared to two commercially used termite pesticides, the bio-insecticide, Bacillus thuringiensis var. kurstaki (Protecto 9.4% WP) and Dursban (Chlorpyrifos 48%). Gas chromatography-mass spectrometry (GC-MS) analysis was used to identify the main compounds in the three plant extracts. The main compounds in Lavandula Latifolia were linalool (21.49%), lavandulol (12.77%), ß-terpinyl acetate (10.49%), and camphor (9.30%). Origanum vulgare extract contained thymol (14.64%), m-cymene (10.63%), linalool (6.75%), and terpinen-4-ol (6.92%) as main compounds. Syzygium aromaticum contained eugenol (99.16%) as the most abundant identified compound. The extract of O. vulgare caused the highest termite death rate, with an LC50 of 770.67 mg/L. Exposure to lavender extract showed a high death rate with an LC50 of 1086.39 mg/L. Clove extract did not show significant insecticidal activity with an LC50 > 2000 mg/L. Significant termiticide effects were found, with LC50 values of 84.09 and 269.98 mg/L for soldiers and workers under the application of Dursban and Protecto, respectively. The LC50 values reported for nymphs were <120, <164.5, and 627.87 mg/L after exposure to Dursban, Protecto, and O. vulgare extract, respectively. The results of the study show that some of the extracts have low toxicity compared to the bioagent and Dursban, and may show promise as natural termiticides, particularly as extracts from O. vulgare.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA