Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Sci ; 40(3): 413-427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38170424

RESUMEN

The plant Saussurea Simpsoniana, which has been used in traditional medicine for its biocompatibility and abundant nutrients, offers a wide range of remedies. Local communities effectively utilize medicines derived from the plant's roots to treat various ailments such as bronchitis, rheumatic pain, and abdominal and nervous disorders. In this study, we present an elemental analysis of the chemical composition (wt%) of this medicinal plant using the laser-induced breakdown spectroscopy (LIBS) technique. In the air atmosphere, an Nd:YAG (Q-switched) laser operating at a wavelength of 532 nm is utilized to create plasma on the sample's surface. This laser has a maximum pulse energy of approximately 400 mJ and a pulse duration of 5 ns. A set of six miniature spectrometers, covering the wavelength range of 220-970 nm, was utilized to capture and record the optical emissions emitted by the plasma. The qualitative analysis of LIBS revealed the presence of 13 major and minor elements, including Al, Ba, C, Ca, Fe, H, K, Li, Mg, Na, Si, Sr, and Ti. Quantitative analysis was performed using calibration-free laser-induced breakdown spectroscopy (CF-LIBS), ensuring local thermodynamical equilibrium (LTE) and optically thin plasma condition by considering plasma excitation temperature and electron number density. In addition, a comparison was made between the results obtained from CF-LIBS and those acquired through energy-dispersive X-ray spectroscopy (EDX) analysis.


Asunto(s)
Plantas Medicinales , Saussurea , Rayos Láser , Espectrometría por Rayos X , Semillas
2.
J Fluoresc ; 32(6): 1977-1989, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35789318

RESUMEN

In these studies, Fluorescence spectroscopy has been utilized for the characterization of pure and commercially available corn oil. The best excitation wavelength of 380 nm has been investigated, where maximum spectral information can be assessed. The emission spectra from pure and commercial corn oil samples disclosed that pure corn oil contained oleic acid, beta-carotenes, chlorophylls, isomers of vitamin E and traces of oxidized products which exhibit fluorescence at 406, 525, 675, 440 and 435/475 nm respectively. Whereas, commercial corn oils lack these valuable ingredients and only contain fats along with their primary and secondary oxidized products that emit a broad emission band centred at 440 nm. The study has also depicted that Fluorescence spectroscopy can even be used to select best quality corn oil among pure corn oil samples with different varieties and seed origins. In addition, the effect of temperature on the composition of pure and commercial corn oil samples have also been investigated by heating them at 100, 120,140, 160, 180 and 200 °C each sample for 30 min. This was done because corn oil is being used for cooking where it is generally heated up to 120 °C and for deep frying up to 180 °C. On heating, in pure corn oil, deterioration of Vitamin-E and beta-carotenes occurred with an increase in the oxidation products, whereas, in commercial oil samples, only the concentration of oxidation products increased. However, it was found that up to 140 °C, pure corn oil can be used safely for cooking purpose where it does not lose much of its valuable ingredients while in commercial corn oils, fat composition does not alter much up to 180 °C and after that oxidized products start to increase rapidly.


Asunto(s)
Aceite de Maíz , Ácido Oléico , Aceite de Maíz/química , Espectrometría de Fluorescencia , Aceites de Plantas/química , Calor , Vitamina E , beta Caroteno , Vitaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA