Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 252-263, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37773023

RESUMEN

Xylanase, an exogenous enzyme that plays an essential role in energy metabolism by hydrolysing xylan into xylose, has been shown to positively influence nutrient digestion and utilisation in ruminants. The objective of this study was to evaluate the effects of xylanase supplementation on the back-fat thickness, fatty acid profiles, antioxidant capacity, and differentially expressed genes (DEGs) in the subcutaneous fat of Tibetan sheep. Sixty three-month-old rams with an average weight of 19.35 ± 2.18 kg were randomly assigned to control (no enzyme added, WH group) and xylanase (0.2% of diet on a dry matter basis, WE group) treatments. The experiment was conducted over 97 d, including 7 d of adaption to the diets. The results showed that xylanase supplementation in the diet increased adipocyte volume of subcutaneous fat (p < 0.05), shown by hematoxylin and eosin (H&E) staining. Gas chromatography showed greater concentrations of C14:0 and C16:0 in the subcutaneous fat of controls compared with the enzyme-treated group (p < 0.05), while opposite trend was seen for the absolute contents of C18:1n9t, C20:1, C18:2n6c, C18:3, and C18:3n3 (p < 0.05). Compared with controls, supplementation with xylanase increased the activity of T-AOC significantly (p < 0.05). Transcriptomic analysis showed the presence of 1630 DEGs between the two groups, of which 1023 were up-regulated and 607 were down-regulated, with enrichment in 4833 Gene Ontology terms, and significant enrichment in 31 terms (p < 0.05). The common DEGs were enriched in 295 pathways and significantly enriched in 26 pathways. Additionally, the expression of lipid-related genes, including fatty acid synthase, superoxide dismutase, fatty acid binding protein 5, carnitine palmytoyltransferase 1 A, and peroxisome proliferator-activated receptor A were verified via quantitative reverse-transcription polymerase chain reaction. In conclusion, dietary xylanase supplementation was found to reduce subcutaneous fat deposition in Tibetan sheep, likely through modulating the expression of lipid-related genes.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos , Animales , Ovinos , Masculino , Suplementos Dietéticos/análisis , Ácidos Grasos/metabolismo , Antioxidantes/farmacología , Triticum/metabolismo , Tibet , Alimentación Animal/análisis , Endo-1,4-beta Xilanasas/farmacología , Digestión , Dieta/veterinaria , Grasa Subcutánea/metabolismo
2.
Chem Biodivers ; 21(2): e202301815, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38152840

RESUMEN

Pistacia chinensis subsp. integerrima (J.L. Stewart) Rech. f. is a plant known for its therapeutic applications in traditional medicine, which are related to its antimicrobial, anticancer, antioxidant, anti-inflammatory, analgesic, antidiarrheal, and muscle relaxant properties. The galls of P. chinensis are rich in triterpenes and flavonoids, and we here report the extraction of pistagremic acid (1), apigenin (2) and sakuranetin (3) from this source. The isolated compounds were tested against Aspergillus flavus, Candida albicans, Candida glabrata, Fusarium solani, Microsporum canis and Trichoderma longibrachiatum. The results highlighted the antimicrobial activity of flavonoids 2 and 3, suggesting that this class of molecules may be responsible for the effect related to the traditional use. On the other hand, when the compounds and the extract were tested for their antiproliferative activity on a panel of 4 human cancer cell lines, the triterpene pistagremic acid (1) showed a higher potential, thus demonstrating a different bioactivity profile. Structure-based docking and molecular dynamics simulations were used to help the interpretation of experimental results. Taken together, the here reported findings pave the way for the rationalization of the use of P. chinensis extracts, highlighting the contributions of the different components of galls to the observed bioactivity.


Asunto(s)
Pistacia , Triterpenos , Humanos , Antifúngicos/farmacología , Triterpenos/farmacología , Flavonoides/farmacología , Extractos Vegetales
3.
Chem Biodivers ; 20(7): e202300115, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37236909

RESUMEN

Most heavy metals and industrial chemicals such as nicotine and lead cause harm to the reproduction process through a decrease in sperm motility, fertilization process, and sperm binding to the oocyte. Salvia officinalis L. (sage) has been reported to enhance serum testosterone levels and other certain biochemical enzymes. Thus, the current study is aimed at evaluating the potential health benefits of S. officinalis L. methanol extract on lead and nicotine hydrogen tartrate-induced sperm quality degeneration in male rats and also identifying some of the non-polar volatile bioactive compounds that might be attributed to the bioactivity of S. officinalis extract using gas chromatography-mass spectrometry (GC/MS). In the study, fifty-four mature male albino rats of about 220-250 g [were divided randomly and equally into 9 groups (n=6)]. Sperm quality degeneration was induced through the oral administration of 1.5 g/L of lead acetate in drinking water or peritoneal injection of 0.50 mg/kg (animal weight) nicotine hydrogen tartrate for sixty days. Two doses (200 & 400 mg/kg b.w.) of S. officinalis L. were used. The rats were anesthetized after the experimental period and then sacrificed. Blood samples were collected while the epididymis, testicle, and accessory sex organs (prostates and seminal vesical) were taken for histopathological studies. Twelve major compounds were identified through the GC/MS analysis of S. officinalis L. methanol extract. Lead and nicotine toxicity had a great effect on the rats' sperm quality causing a significant (p<0.05) decrease in the quantity of sperm and sperm motility as well as an upsurge in the abnormalities of the sperm and a reduction in the length & diameter of seminiferous tubules and size & weight of sexual organs (accessory sex glands, epididymis, and testis). The administration of S. officinalis L. methanol extract, however, had a positive impact on the sexual organ weights, semen quality & quantity, and rats' fertility, thus, ameliorating the adversative effects of both lead and nicotine. Further evaluation and isolation of the bioactive components are recommended as potential drug leads.


Asunto(s)
Metanol , Salvia officinalis , Ratas , Masculino , Animales , Nicotina/farmacología , Análisis de Semen , Tartratos/farmacología , Ratas Wistar , Recuento de Espermatozoides/métodos , Motilidad Espermática , Semillas , Espermatozoides , Extractos Vegetales/farmacología
4.
Molecules ; 28(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110582

RESUMEN

The oxidation of food emulsions causes rancidity, which reduces their shelf life. To prevent rancidity, synthetic antioxidants are widely used in the food industry. However, due to their potential health risks, researchers are exploring natural alternatives. This study aimed to investigate whether Rosa canina fruit extract (RCFE) could be used as a natural antioxidant to extend the shelf life of mayonnaise. Mayonnaise containing varying concentrations of RCFE [0.125% (T1), 0.25% (T2), 0.50% (T3), 0.75% (T4)] was compared to a mayonnaise control sample (C1) and a mayonnaise sample containing 0.02% BHT (C2) for 60 days of storage at 4 °C. RCFE was found to have high levels of total phenols content (52.06 ± 1.14 mg GAE g-1), total flavonoids content (26.31 ± 1.03 mg QE g-1), and free radical scavenging activity. The GC-MS analysis of RCFE revealed 39 different peaks, whereas the HPLC analysis showed the presence of 13 polyphenolic compounds in RCFE. The pH values of T2, T3, and T4 mayonnaise samples substantially declined as storage progressed; however, the reduction was less than that of C1 and C2. After 60 days, mayonnaise samples T2, T3, and T4 had greatly reduced peroxide and free fatty acid levels compared to C1 and C2. The mayonnaise enriched with RCFE (T3 and T4) had the most potent antioxidative ability and the lowest value of lipid hydroperoxides (peroxide value, POV) and the lowest value of thiobarbituric-acid-reactive substances (TBARS). The sensory evaluation revealed that the T3 sample exhibited the highest overall acceptability. In conclusion, this study recommends that RCFE could be used as a natural preservative to enhance the shelf life of functional foods.


Asunto(s)
Antioxidantes , Rosa , Antioxidantes/farmacología , Antioxidantes/química , Rosa/química , Frutas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Peróxidos , Fitoquímicos
5.
Chem Biol Interact ; 368: 110170, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202214

RESUMEN

Colon cancer affects both men and women and is the world's second most significant cause of cancer-related mortality. Colon cancer death rates have risen worldwide due to the current food habit and lifestyle, which include a lot of meat, alcohol, and not enough physical exercise. As a result, novel, less harmful pharmacological treatments for colon cancer are needed now more than ever before. Colorectal cancer (CRC) affects a significant portion of the world's population. Chemotherapy's limits, as demonstrated by side effects and resistance in CRC patients, are now being sought after despite recent breakthroughs that have improved patient care and survival. Numerous chemical compounds present in medicinal herbs have shown anti-tumor and anti-apoptotic properties against various cancers, including CRC, in animal experiments. These chemicals, which come from several phytochemical families, activate several signaling pathways. This article discusses research on the anti-CRC benefits of many plants conducted in vitro, as well as the phytochemical components of plants that may play a role in the study. Researchers are also looking into the impact of these compounds on various pathways involved in cancer signaling. According to this review, anti-CRC compounds may be generated from medicinal plants. That's why we're looking at how natural items can help treat cancer while lowering the risk of developing it.


Asunto(s)
Productos Biológicos , Neoplasias del Colon , Neoplasias Colorrectales , Plantas Medicinales , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Plantas Medicinales/química , Fitoquímicos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control
6.
Artículo en Inglés | MEDLINE | ID: mdl-35722143

RESUMEN

Euphorbia pulcherrima is an important medicinal plant that is used in a traditional system for its curative properties such as analgesic potency, antipyretic, anti-inflammatory, sedation potential, and antidepressant and cure of diseases such as skin diseases. This study deals with the isolation of two flavonoids namely spinacetin (1) and patuletin (2) from chloroform fraction of Euphorbia pulcherrima. The isolated compound spinacetin (1) and patuletin (2) were screened for in vivo anti-inflammatory, analgesic, sedative, and muscle relaxant effects. Compounds 1 and 2 were assessed against hot plate-induced noxious stimuli at various doses which showed excellent (p < 0.05) analgesic effect in a dose-dependent manner. The muscle relaxant activity was determined by traction and inclined screening model, both compounds showed significant muscle relaxant activity with time. The sedative potential of isolated compounds 1 and 2 was determined by the open field model, both compounds showed good sedation (p < 0.05) at 20 mg/kg. The anti-inflammatory potential of compound 1 was recorded by histamine-induced paw edema and carrageen paw edema model, and in both models, compounds 1 and 2 showed strong effect at 20 mg/kg. Binding orientations, binding energy values, and computed inhibition constants (Ki) values revealed that the studied compounds have a good to excellent inhibition potential against µ-opioid receptors and COX-2.

7.
Molecules ; 27(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35684311

RESUMEN

Micromeria biflora, a traditional medicinal plant, is extensively used for treating various painful conditions, such as nose bleeds, wounds, and sinusitis. A phytochemical investigation of the chloroform fraction of Micromeria biflora led to the isolation of salicylalazine. Salicylalazine was assessed in vivo for analgesia, muscle relaxation, sedative, and anti-inflammatory properties, as well as in vitro for COX-1/2 inhibition activities. It was assessed against a hot plate-induced model at different doses. The muscle relaxant potential of salicylalazine was evaluated in traction and inclined screening models, while sedative properties were determined using an open-field model. The anti-inflammatory potential of salicylalazine was assessed in histamine and carrageenan-induced paw edema screening models. Salicylalazine exhibited significant analgesic potential in a dose-dependent manner. In both screening models, an excellent time-dependent muscle-relaxation effect was observed. Salicylalazine demonstrated excellent sedation at high doses. Its anti-inflammatory activity was determined through the initial and late phases of edema. It exhibited anticancer potential against NCI-H226, HepG2, A498, and MDR2780AD cell lines. In vitro, salicylalazine showed preferential COX-2 inhibition (over COX-1) with an SI value of 4.85. It was less effective in the initial phase, while, in the later phase, it demonstrated significant effects at 15 and 20 mg/kg doses compared with the negative control. Salicylalazine did not exhibit cytotoxicity in the MTT assay, preliminarily indicating its safety.


Asunto(s)
Lamiaceae , Extractos Vegetales , Analgésicos/uso terapéutico , Antiinflamatorios/química , Carragenina/efectos adversos , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Humanos , Hipnóticos y Sedantes/uso terapéutico , Simulación del Acoplamiento Molecular , Extractos Vegetales/química
8.
ACS Omega ; 7(17): 14630-14642, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557671

RESUMEN

Edible lotus (Nelumbo nucifera G.) is widely consumed in Asian countries and treated as a functional food and traditional medicinal herb due to its abundant bioactive compounds. Lotus rhizome peels, rhizome knots, and seed embryos are important byproducts and processing waste of edible lotus (Nelumbo nucifera G.) with commercial significance. Nevertheless, the comprehensive phenolic profiling of different parts of lotus is still scarce. Thus, this study aimed to review the phenolic contents and antioxidant potential in lotus seeds (embryo and cotyledon) and rhizomes (peel, knot, and pulp) grown in Australia. In the phenolic content and antioxidant potential estimation assays by comparing to the corresponding reference standards, the lotus seed embryo exhibited the highest total phenolic content (10.77 ± 0.66 mg GAE/gf.w.), total flavonoid content (1.61 ± 0.03 mg QE/gf.w.), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (9.66 ± 0.10 mg AAE/gf.w.), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging activity (14.35 ± 0.20 mg AAE/gf.w.), and total antioxidant capacity (6.46 ± 0.30 mg AAE/g), while the highest value of ferric ion reducing antioxidant power (FRAP) activity and total tannin content was present in the lotus rhizome knot (2.30 ± 0.13 mg AAE/gf.w.). A total of 86 phenolic compounds were identified in five parts of lotus by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), including phenolic acids (20), flavonoids (51), lignans (3), stilbenes (2), and other polyphenols (10). The most phenolic compounds, reaching up to 68%, were present in the lotus seed embryo (59). Furthermore, the lotus rhizome peel and lotus seed embryo exhibit significantly higher contents of selected polyphenols than other lotus parts according to high-performance liquid chromatography (HPLC) quantification analysis. The results highlighted that byproducts and processing waste of edible lotus are rich sources of phenolic compounds, which may be good candidates for further exploitation and utilization in food, animal feeding, and pharmaceutical industries.

9.
J Ethnopharmacol ; 295: 115337, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35605919

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The use of herbal and medicinal plants to treat male infertility is well known in history. Tribulus terrestris L. (TT) belongs to the Zygophyllaceae family and it is used in folk medicine to vitalize and also improve both physical performance and sexual function in men in addition to the protective effect of the gross saponins of TT against ischemic stroke and its clinical anti-inflammatory property. AIM OF THE STUDY: This study aimed to investigate the effects of methanol extract of T. terrestris on nicotine hydrogen tartrate and lead-induced degeneration of sperm quality in male rats and to identify the volatile bioactive non-polar compounds thought to be responsible for its activity using gas chromatography-mass spectrometry (GC-MS). MATERIALS AND METHODS: The effect of T. terrestris on nicotine hydrogen tartrate and lead-induced infertility was evaluated in male rats. Fifty-four mature male albino rats weighing 220-250 g body weight were used. The rats were randomly divided into 9 equal groups (n = 6). Infertility was induced by administering nicotine hydrogen tartrate (0.50 mg/kg) through peritoneal injection (i.p.) or lead acetate (1.5 g/L) orally with drinking water for sixty days. Two doses (50 and 100 mg/kg body weight of the animal) of T. terrestris were also used. At the end of the experimental period, the rats were anesthetized and sacrificed. Blood samples were collected. Hormonal analyses were carried out on the serum. The testicle, epididymis, and accessory sex organs (seminal vesical and prostates) were removed for histopathological analysis. Gas chromatography-mass spectrometry (GC-MS) analysis of the methanol extract was also carried out to identify major volatile compounds in T. terrestris methanol extract. RESULTS: Nicotine and lead toxicity caused a significant (p < 0.05) decrease in the number of sperm, motility, and an increase in the sperm abnormalities such as the reduction in weight and size of sexual organs (testis, epididymis, and accessory sex glands), reduction of diameter and length of seminiferous tubules. The administration of T. terrestris methanol extract, however, improved the semen quantity and quality, sexual organ weights, and fertility of male rats and, thus, ameliorated the adverse effects of nicotine and lead. Ten major compounds were found from the GC-MS analysis of the extract of T. terrestris methanol extract. CONCLUSION: Findings showed that T. terrestris plant methanolic extracts ameliorated nicotine hydrogen tartrate and lead-induced degeneration of sperm quality in male rats. The GC-MS analysis of the T. terrestris plant methanolic extracts revealed the presence of several important bioactive compounds which were thought to be responsible for the ameliorative effect. Further isolation and evaluation of the individual components would provide relevant lead to finding new drugs.


Asunto(s)
Infertilidad Masculina , Plomo , Nicotina , Extractos Vegetales , Tribulus , Animales , Peso Corporal , Infertilidad Masculina/tratamiento farmacológico , Plomo/toxicidad , Masculino , Metanol , Nicotina/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Espermatozoides/efectos de los fármacos , Tartratos/toxicidad , Tribulus/química
10.
Bioinorg Chem Appl ; 2022: 2432758, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35449714

RESUMEN

There is a need to synthesize eco-friendly nanoparticles with more effective and potent antibacterial activities. A green and cost-effective method for the synthesis of silver nanoparticles (AgNPs) using Thymus vulgaris, Mentha piperita, and Zingiber officinale extracts was developed. The analytical instrumentation, namely, UV/Vis, absorption spectroscopy, FTIR, and scanning electron microscopy (SEM), was used to determine the developed AgNPs, confirming the functional groups involved in their reduction. Acidic molybdate, DPPH, and FRAP regents were reacted with AgNPs extract to evaluate their antioxidant, scavenging, and oxidative activities. The agar well diffusion method was used to determine the antibacterial potential of AgNPs extracts using clinical isolates. The developed AgNPs showed peaks at 25 cum\Diff, 50 cum\Diff, and 75 cum\Diff, respectively, of 16.59 ± 0.78, 45.94 ± 1.07, and 81.04 ± 0.98 nm, for Thymus vulgaris, Mentha piperita, and Zingiber officinale. SEM revealed uniform prepared and encapsulated AgNPs by plant extracts matrix. The FTIR shows the involvement of amide (-CO-NH2), carbonyl (-CO), and hydroxyl (-OH), which resulted in the reduction of AgNPs. The AgNPs extract showed significantly higher TAA, DPPH, and FRAP values than free AgNPs and plant extract (p < 0.05). Antibacterial of AgNPs extracts revealed various degrees of inhibition zones against Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus. The developed AgNPs extract showed acceptable antioxidant activities and noticeable antibacterial potential. The prepared green synthesized AgNPs showed a promising antibacterial activity against four multidrug-resistant clinical isolates, Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus. Further, fractionated extracts other than crude extracts will be utilized in the preparation of AgNPs to get more efficient antibacterial activities for future work.

11.
Artículo en Inglés | MEDLINE | ID: mdl-35341158

RESUMEN

Patients treated with cyclophosphamide (CP) usually suffer from severe hemorrhagic cystitis (HC). Our previous study exhibited that mesna + celery cotherapy partially ameliorated HC. Therefore, there is a substantial need to seek alternative regimens to get complete protection against CP-induced HC. The current study investigated the effects of mesna + celery seed oil (MCSO) or mesna + manuka honey (MMH) cotherapy against CP-induced HC in adult male rabbits. The forty rabbits were divided into four equal groups and treated for three weeks. The control group (G1) received distilled water and the second group (G2) received CP (50 mg/kg/week). The third group (G3) received CP + MCSO (CPMCSO regimen), and the fourth group (G4) received CP + MMH (CPMMH regimen). The urinary bladder (UB) specimens were processed to evaluate UB changes through histopathological, immunohistochemical, ultrastructural, and biochemical investigations. In G2, CP provoked HC features (urothelial necrosis, ulceration, and sloughing), UB fibrosis, and TNF-α immunoexpression. Besides, CP reduced the activity of antioxidant enzymes (GPx1, SOD3, and CAT) and elevated the serum levels of NF-κB, TNF-α, IL-1B, and IL-6 cytokines in G2 rabbits. In contrast, the CPMMH regimen caused significant increments of UB protection against HC in G4 rabbits compared to the partial protection by the CPMCSO regimen in G3. Therefore, our study indicated for the first time that the novel CPMMH regimen resulted in complete UB protection against CP-induced HC via combined antioxidant, anti-inflammatory, and antifibrotic properties.

12.
Crit Rev Food Sci Nutr ; 62(10): 2683-2706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33327732

RESUMEN

Saffron (Crocus sativus L., family Iridaceae) is used traditionally for medicinal purpose in Chinese, Ayurvedic, Persian and Unani medicines. The bioactive constituents such as apocarotenoids, monoterpenoids, flavonoids, phenolic acids and phytosterols are widely investigated in experimental and clinical studies for a wide range of therapeutic effects, especially on the nervous system. Some of the active constituents of saffron have high bioavailability and bioaccessibility and ability to pass the blood-brain barrier. Multiple preclinical and clinical studies have supported neuroprotective, anxiolytic, antidepressant, learning and memory-enhancing effect of saffron and its bioactive constituents (safranal, crocin, and picrocrocin). Thus, this plant and its active compounds could be a beneficial medicinal food ingredient in the formation of drugs targeting nervous system disorders. This review focuses on phytochemistry, bioaccessibility, bioavailability, and bioactivity of phytochemicals in saffron. Furthermore, the therapeutic effect of saffron against different nervous system disorders has also been discussed in detail.


Asunto(s)
Crocus , Antidepresivos , Crocus/química , Flavonoides , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
13.
Molecules ; 26(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885950

RESUMEN

Berberine (BBR), a potential bioactive agent, has remarkable health benefits. A substantial amount of research has been conducted to date to establish the anticancer potential of BBR. The present review consolidates salient information concerning the promising anticancer activity of this compound. The therapeutic efficacy of BBR has been reported in several studies regarding colon, breast, pancreatic, liver, oral, bone, cutaneous, prostate, intestine, and thyroid cancers. BBR prevents cancer cell proliferation by inducing apoptosis and controlling the cell cycle as well as autophagy. BBR also hinders tumor cell invasion and metastasis by down-regulating metastasis-related proteins. Moreover, BBR is also beneficial in the early stages of cancer development by lowering epithelial-mesenchymal transition protein expression. Despite its significance as a potentially promising drug candidate, there are currently no pure berberine preparations approved to treat specific ailments. Hence, this review highlights our current comprehensive knowledge of sources, extraction methods, pharmacokinetic, and pharmacodynamic profiles of berberine, as well as the proposed mechanisms of action associated with its anticancer potential. The information presented here will help provide a baseline for researchers, scientists, and drug developers regarding the use of berberine as a promising candidate in treating different types of cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Berberina/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Berberina/farmacología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos
14.
Artículo en Inglés | MEDLINE | ID: mdl-34745283

RESUMEN

Herbal plants represent a new source of hypoglycemic antidiabetic drugs; haematological and histopathological studies of methanol extract of Deverra tortuosa in streptozotocin-induced diabetic rats were investigated in vivo. A single intraperitoneal injection of 160 mg/kg bodyweights of streptozotocin was used to cause diabetes. Blood glucose levels were tested with an AccuCheck Advantage II glucometer and blood glucose test strips. After diabetes was confirmed, animals were orally treated with the extract, metformin, and insulin according to the experimental design. After extract therapy, histological alterations in the pancreas of diabetic rats were investigated. When compared to a control group, daily oral administration of D. tortuosa extract (300 mg/kg body weight) plus metformin (100 mg/kg) had a positive effect on blood glucose levels as well as showed an increased number of white blood cells (WBCs) and red blood cells (RBCs). The treatment with the extract for two weeks showed a positive impact on pancreatic histopathological changes in the groups with the diabetic rats. Phenolic fraction of the methanol extract was screened by the liquid chromatography-mass spectroscopy (LC-MS) method, which unveiled the existence of flavonoid compounds and phenolics as kaempferol, rutin, isorhamnetin-3-O-rutinoside, caffeic acid, and 4-hydroxybenzoic acid 4-O-glucoside. The results confirmed the use of the plant as an antidiabetic agent; the research recommended further studies on the plant to use the plant as an antidiabetic drug, where the plant extract also showed improvement in blood parameters.

16.
Phytomedicine ; 90: 153647, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34362632

RESUMEN

BACKGROUND: Honokiol is a pleiotropic compound which been isolated from Magnolia species such as Magnolia grandiflora and Magnolia dealbata. Magnolia species Magnolia grandiflora is used in traditional medicine for the treatment of various diseases. PURPOSE: The objective of this review is to summarize the pharmacological potential and therapeutic insights of honokiol. STUDY DESIGN: Honokiol has been specified as a novel alternative to treat various disorders such as liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties and others. Therefore, this study designed to represent the in-depth therapeutic potential of honokiol. METHODS: Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using the keywords 'Honokiol', 'Health Benefits' and 'Therapeutic Insights' as the keywords for primary searches and secondary search terms were used as follows: 'Anticancer', 'Oxidative Stress', 'Neuroprotective', 'Antimicrobial', 'Cardioprotection', 'Hepatoprotective', 'Anti-inflammatory', 'Arthritis', 'Reproductive Disorders'. RESULTS: This promising bioactive compound presented an wide range of therapeutic and biological activities which include liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties, and others. Its pharmacokinetics has been established in experimental animals, while in humans, this is still speculative. Some of its mechanism for exhibiting its pharmacological effects includes apoptosis of diseased cells, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6), amelioration of impaired hepatic enzymes and reversal of morphological alterations, among others. CONCLUSION: All these actions displayed by this novel compound could make it serve as a lead in the formulation of drugs with higher efficacy and negligible side effects utilized in the treatment of several human diseases.


Asunto(s)
Compuestos de Bifenilo , Lignanos , Magnolia , Animales , Compuestos de Bifenilo/farmacología , Humanos , Lignanos/farmacología , Magnolia/química , Extractos Vegetales/farmacología
17.
Biomed Pharmacother ; 140: 111726, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34111725

RESUMEN

Bronchial asthma (BA) is a heterogeneous allergic respiratory disease with diverse inflammatory symptoms, pathology, and responses to treatment. Thyme is a natural product which is consisted of multiple phenolic compounds of therapeutic significance for treatment of cough and bronchitis. This study evaluated the efficacy of thyme oil against ovalbumin (OVA)-induced BA in an experimental rabbit model. Forty male rabbits were divided into four equal groups [control group (G1), OVA (G2), thyme oil (G3), and OVA plus thyme oil (G4)]. Animals were treated for 30 days, and clinical, histopathological (HP), histochemical (HC), immunohistochemical (IHC), morphometric, biochemical and flow cytometry methods were performed, followed by statistical analysis. All used methods revealed normal structure of the lung tissues in rabbits of G1 and G3. In contrast, the clinical examination of G2 rabbits revealed an obvious increase in the respiratory rate, sneezing and wheezing, whereas the HP, HC and IHC techniques exhibited substantial inflammatory changes in the peribronchio-vascular lung tissues with thinning, degeneration, apoptosis (using the TUNEL assay), necrosis, and shedding of the airway epithelium. Furthermore, the morphometric results confirmed significant increases in the numbers of inflammatory cells, goblet cells, eosinophils and apoptotic cells from (12, 0, 2, 2 cells) to (34,10, 16, 18 cells) respectively, as well as the area percentage of collagen fiber deposition and immunoexpression of eotaxin-1/10 high power fields. Additionally, the biochemical results revealed significant increases in the serum levels of TSLP, IL-4, IL-5, IL-9, IL-13, IgE and eotaxin-1 cytokines from (140, 40, 15, 38, 120, 100, 48) pg./ml to (360, 270, 130, 85, 365, 398, 110) pg./ml respectively, while analysis of ROS by flow cytometry revealed remarkable oxidative stress effects in G2 rabbits. On the other hand, treatment of rabbits with thyme oil in G4 substantially alleviated all OVA-induced alterations. Overall, our findings indicate for the first time that thyme oil can ameliorate OVA-induced BA via its immunomodulatory, anti-inflammatory, antiapoptotic, and antioxidant effects on the lung tissues of rabbits.


Asunto(s)
Antiasmáticos/uso terapéutico , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Asma/tratamiento farmacológico , Aceites de Plantas/uso terapéutico , Thymus (Planta) , Alérgenos , Animales , Antiasmáticos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Asma/inmunología , Asma/patología , Citocinas/sangre , Citocinas/inmunología , Células Caliciformes/efectos de los fármacos , Inmunoglobulina E/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Masculino , Ovalbúmina , Aceites de Plantas/farmacología , Conejos , Especies Reactivas de Oxígeno/inmunología , Células Th2/inmunología
18.
Inflammation ; 44(1): 297-306, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32901390

RESUMEN

Heterophragma adenophyllum is a traditional medicinal plant that has been used as anti-inflammatory and to relief muscular tension. In the current research, four isolated constitutes namely lapacho (1), peshawaraquinone (2), indanone derivatives (3), α-lapachone (4) of H. adenophyllum were tested for anti-inflammatory effect using the carrageenan- and histamine-induced paw edema paradigm. The tested compounds (1-4) were evaluated for anti-inflammatory effect during the early and late phase of edema induction. In the early phase, all tested compounds (0.5 2.5 mg/kg each i.p.) demonstrated less than 50% effect, while in the later phase, compounds (2 and 3) demonstrated 85.66 and 89.87% attenuation. In addition, compounds (1-4) were subjected to histamine-induced inflammation, where compounds 2 and 3 exhibited excellent effects 86.87 and 89.98%, respectively at 5 mg/kg after the 2nd hour of administration, whereas compounds 1 and 4 did not exhibit any significant effect as compared with the negative control. Molecular docking results revealed a very high potency of compound based on the protein-ligand interaction (PLI) profile, which was further evaluated through a molecular dynamic simulation study. Therefore, the anti-inflammatory effect of H. adenophyllum attributed to the presence of these bioactive compounds (1-4) strongly supports the traditional uses of H. adenophyllum for treatment of inflammation. However, compounds 2 and 3 which exerted anti-inflammatory effect must be subjected for further mechanistic studies.


Asunto(s)
Antiinflamatorios/administración & dosificación , Simulación por Computador , Simulación del Acoplamiento Molecular/métodos , Extractos Vegetales/administración & dosificación , Plantas Medicinales , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/metabolismo , Sitios de Unión/fisiología , Relación Dosis-Respuesta a Droga , Edema/tratamiento farmacológico , Edema/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Estructura Secundaria de Proteína
19.
Nat Prod Res ; 35(23): 5434-5439, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32538679

RESUMEN

The current study aims at exploring enzyme inhibition of four species of medicinal herbs, namely Senna bicapsularis, Thevetia peruviana, Nerium oleander and Vinca major. Plant selection was done on the basis of their therapeutic uses by local practitioners. The crude methanolic extracts of these plants were tested for their α-glycosidase and urease enzyme inhibition potential. The observed urease inhibitory potential for the crude extract of S. bicapsularis, T. peruviana and N. oleander were 8.3 ± 0.33 µg, 6.98 ± 0.98 µg and 9.56 ± 1.43 µg, respectively while the V. major did not show any inhibition. In addition, the IC50 value for Thiourea was 22.3 ± 1.14 µg. The crude extracts of S. bicapsularis, T. peruviana, N. oleander, V. major were shown to inhibit α-glycosidase activity with an IC50 value of 630.3 ± 0.03 µg, 700.7 ± 2.43 µg, 430.4 ± 3.97 µg, and the standard (acarbose) 880 ± 1.03  µM, respectively. Based on the TLC profile, the extract of S. bicapsularis was subjected to column chromatography and the major component named rhein (1) was identified. Compound 1 exhibited excellent urease and α-glycosidase inhibitory activity with an IC50 value of 7.4 ± 0.32 and 622.3 ± 1.03 µM, respectively.


Asunto(s)
Plantas Medicinales , Glicósido Hidrolasas , Pakistán , Extractos Vegetales/farmacología , Ureasa
20.
BMC Complement Med Ther ; 20(1): 237, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711536

RESUMEN

BACKGROUND: Analgesic, anti-inflammatory, and sedative drugs are available with potential side effects such as peptic ulcer and addiction among other things. In this regard, research is underway to find safe, effective, and economical drugs free of these side effects. In this study, an isolated natural product from Diospyros lotus, was tested for the aforementioned bioactivities. OBJECTIVES: To evaluate analgesic, anti-inflammatory, and sedative potential of D. lotus extracts in animal paradigms using BALB/c mice as experimental model. METHODS: Analgesic, anti-inflammatory and sedative activities of dinaphthodiospyrol G (1) isolated from the chloroform fraction of D. lotus were evaluated using different experimental procedures. Anti-inflammatory effect was evaluated using the carrageenan and histamine-induced paw edema, whereas the antinociceptive effect was quantified by means of the hot plate analgesiometer. On the other hand, the sedative effect was determined using animal assay for screening the locomotors effects of compound 1. Compound 1 was also subjected to molecular modeling studies against cyclooxygenase enzymes. RESULTS: Results from this investigation showed that the extract is devoid of anti-inflammatory and antinociceptive potentials but has a significant sedative effect, whereas the tested compound exhibited 55.23 and 78.34% attenuation in paw edema by carrageenan and histamine assays, respectively. A significant (p < 0.001) and dose-dependent antinociceptive and sedative effects were demonstrated by the isolated compound. Molecular docking and dynamics simulation studies of the isolated compound against cyclooxygenase enzyme indicated that compound 1 forms specific interactions with key residues in the active site of the target receptor, which validates the potential use of the isolated compound as cyclooxygenase inhibitor. CONCLUSIONS: Compound 1 exhibited remarkable analgesic, anti-inflammatory, and sedative activities. These findings strongly justify the traditional use of D. lotus in the treatment of inflammation, pain, and insomnia.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Diospyros , Hipnóticos y Sedantes/farmacología , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Analgésicos/química , Animales , Antiinflamatorios/química , Modelos Animales de Enfermedad , Hipnóticos y Sedantes/química , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Pakistán , Extractos Vegetales/química , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA