Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Econ Entomol ; 114(5): 2147-2154, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34324680

RESUMEN

The sterile insect technique (SIT) is a sustainable pest management tool based on the release of millions of sterile insects that suppress reproduction in targeted populations. Success of SIT depends on survival, maturation, dispersal, and mating of released sterile insects. Laboratory and field cage studies have demonstrated that dietary supplements of methoprene and raspberry ketone (RK) promote sexual maturation of adult Queensland fruit fly, Bactrocera tryoni (Froggatt), and may hence shorten the delay between release and maturity in the field. We investigated the effects of methoprene and RK dietary supplements on field abundance of sexually mature sterile Q-flies relative to untreated flies fed only sugar and yeast hydrolysate before release at 2 d of age. Compared with untreated flies, more methoprene- and RK-treated flies were recaptured in cuelure traps to which only sexually mature males are attracted. At distances of 100 and 200 m from the release point, recapture rates were higher for methoprene- and RK-treated flies than for untreated flies, but at 300 m recapture rates were low and were similar for treated and untreated flies. Rainfall, relative humidity, wind speed, and wind direction did not affect recapture rates, but temperature was positively correlated with recapture rates for all treatments. There was a strong correlation between the number of sterile and wild flies caught in traps, indicating co-location in the field. Dietary supplements of methoprene and RK can substantially increase abundance of sexually mature sterile male Q-flies in the field following release as 2-d-old immature adults.


Asunto(s)
Tephritidae , Animales , Butanonas , Suplementos Dietéticos , Masculino , Metopreno , Saccharomyces cerevisiae
2.
Proc Natl Acad Sci U S A ; 102(33): 11923-7, 2005 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16091465

RESUMEN

Understanding the storage, flux, and turnover of nutrients in organisms is important for quantifying contributions of biota to biogeochemical cycles. Here we present a model that predicts the storage of phosphorus-rich RNA and whole-body phosphorus content in eukaryotes based on the mass- and temperature-dependence of ATP production in mitochondria. Data from a broad assortment of eukaryotes support the model's two main predictions. First, whole-body RNA concentration is proportional to mitochondrial density and consequently scales with body mass to the -1/4 power. Second, whole-body phosphorus content declines with increasing body mass in eukaryotic unicells but approaches a relatively constant value in large multicellular animals because the fraction of phosphorus in RNA decreases relative to the fraction in other pools. Extension of the model shows that differences in the flux of RNA-associated phosphorus are due to the size dependencies of metabolic rate and RNA concentration. Thus, the model explicitly links two biological currencies at the individual level: energy in the form of ATP and materials in the form of phosphorus, both of which are critical to the functioning of ecosystems. The model provides a framework for linking attributes of individuals to the storage and flux of phosphorus in ecosystems.


Asunto(s)
Fósforo/metabolismo , ARN/metabolismo , Animales , Modelos Biológicos , Fósforo/química , ARN/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA