Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
medRxiv ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36778473

RESUMEN

Background: Fecal Microbiota Transplant (FMT) has proven effective in treating recurrent Clostridioides difficile infection (rCDI) and has shown some success in treating inflammatory bowel diseases (IBD). There is emerging evidence that host engraftment of donor taxa is a tenet of successful FMT. However, there is little known regarding predictors of engraftment. We undertook a double-blind, randomized, placebo-controlled pilot study to characterize the response to FMT in children and young adults with mild to moderate active Crohn's disease (CD) and ulcerative colitis (UC). Results: Subjects with CD or UC were randomized to receive antibiotics and weekly FMT or placebo in addition to baseline medications. The treatment arm received seven days of antibiotics followed by FMT enema and then capsules weekly for seven weeks. We enrolled four subjects with CD and 11 with UC, ages 14-29 years. Due to weekly stool sampling, we were able to create a time series of alpha diversity, beta diversity and engraftment as they related to clinical response. Subjects exhibited a wide range of microbial diversity and donor engraftment as FMT progressed. Specifically, engraftment ranged from 26% to 90% at week 2 and 3% to 92% at two months. Consistent with the current literature, increases over time of both alpha diversity (p< 0.05) and donor engraftment (p< 0.05) correlated with improved clinical response. Additionally, our weekly time series enabled an investigation into the clinical and microbial correlates of engraftment at various time points. We discovered that the post-antibiotic but pre-FMT time point, often overlooked in FMT trials, was rich in microbial correlates of eventual engraftment. Greater residual alpha diversity after antibiotic treatment was positively correlated with engraftment and subsequent clinical response. Interestingly, a transient rise in the relative abundance of Lactobacillus was also positively correlated with engraftment, a finding that we recapitulated with our analysis of another FMT trial with publicly available weekly sequencing data. Conclusions: We found that higher residual alpha diversity and Lactobacillus blooms after antibiotic treatment correlated with improved engraftment and clinical response to FMT. Future studies should closely examine the host microbial communities pre-FMT and the impact of antibiotic preconditioning on engraftment and response.

2.
Sci Rep ; 8(1): 12699, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30139999

RESUMEN

Dietary interventions to manipulate the human gut microbiome for improved health have received increasing attention. However, their design has been limited by a lack of understanding of the quantitative impact of diet on a host's microbiota. We present a highly controlled diet perturbation experiment in a healthy, human cohort in which individual micronutrients are spiked in against a standardized background. We identify strong and predictable responses of specific microbes across participants consuming prebiotic spike-ins, at the level of both strains and functional genes, suggesting fine-scale resource partitioning in the human gut. No predictable responses to non-prebiotic micronutrients were found. Surprisingly, we did not observe decreases in day-to-day variability of the microbiota compared to a complex, varying diet, and instead found evidence of diet-induced stress and an associated loss of biodiversity. Our data offer insights into the effect of a low complexity diet on the gut microbiome, and suggest that effective personalized dietary interventions will rely on functional, strain-level characterization of a patient's microbiota.


Asunto(s)
Suplementos Dietéticos , Prebióticos , Adulto , Microbioma Gastrointestinal/fisiología , Humanos , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
3.
mBio ; 9(1)2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463661

RESUMEN

Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology.


Asunto(s)
Biota/efectos de los fármacos , Ecosistema , Contaminación Ambiental , Agua Subterránea/química , Agua Subterránea/microbiología , Contaminantes Químicos del Agua/metabolismo , Concentración de Iones de Hidrógeno , Metagenoma/efectos de los fármacos , Nitratos/análisis , Tennessee , Uranio/análisis
4.
Brain Behav Immun ; 61: 36-49, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27825953

RESUMEN

Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals.


Asunto(s)
Limosilactobacillus reuteri , Oxitocina/metabolismo , Probióticos/administración & dosificación , Fenómenos Fisiológicos de la Piel , Piel/microbiología , Cicatrización de Heridas/fisiología , Adulto , Animales , Corticosterona/sangre , Suplementos Dietéticos , Femenino , Humanos , Ratones , Ratones Noqueados , Oxitocina/sangre , Oxitocina/genética , Regulación hacia Arriba , Adulto Joven
5.
mBio ; 6(3): e00326-15, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25968645

RESUMEN

UNLABELLED: Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. IMPORTANCE: Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Técnicas Biosensibles , Agua Subterránea/microbiología , Consorcios Microbianos , Contaminación por Petróleo/análisis , Contaminantes del Agua/análisis , Bacterias/genética , ADN Bacteriano/análisis , ADN Ribosómico/genética , Ecosistema , Genes de ARNr , Agua Subterránea/química , Hidrocarburos/análisis , Consorcios Microbianos/genética , Nitratos/análisis , Filogenia , ARN Ribosómico 16S/genética , Uranio/análisis , Contaminación Radiactiva del Agua/análisis
6.
Proc Natl Acad Sci U S A ; 111(15): 5462-7, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706773

RESUMEN

The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.


Asunto(s)
Evolución Biológica , Extinción Biológica , Sedimentos Geológicos/química , Redes y Vías Metabólicas/fisiología , Metano/biosíntesis , Methanosarcina/genética , Erupciones Volcánicas/historia , Ciclo del Carbono/fisiología , Isótopos de Carbono/análisis , China , Historia Antigua , Methanosarcina/fisiología , Níquel/análisis , Océanos y Mares , Filogenia , ARN Ribosómico 16S/genética , Erupciones Volcánicas/efectos adversos
7.
Clin Infect Dis ; 58(11): 1515-22, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24762631

RESUMEN

BACKGROUND: Recurrent Clostridium difficile infection (CDI) with poor response to standard antimicrobial therapy is a growing medical concern. We aimed to investigate the outcomes of fecal microbiota transplant (FMT) for relapsing CDI using a frozen suspension from unrelated donors, comparing colonoscopic and nasogastric tube (NGT) administration. METHODS: Healthy volunteer donors were screened and a frozen fecal suspension was generated. Patients with relapsing/refractory CDI were randomized to receive an infusion of donor stools by colonoscopy or NGT. The primary endpoint was clinical resolution of diarrhea without relapse after 8 weeks. The secondary endpoint was self-reported health score using standardized questionnaires. RESULTS: A total of 20 patients were enrolled, 10 in each treatment arm. Patients had a median of 4 (range, 2-16) relapses prior to study enrollment, with 5 (range, 3-15) antibiotic treatment failures. Resolution of diarrhea was achieved in 14 patients (70%) after a single FMT (8 of 10 in the colonoscopy group and 6 of 10 in the NGT group). Five patients were retreated, with 4 obtaining cure, resulting in an overall cure rate of 90%. Daily number of bowel movements changed from a median of 7 (interquartile range [IQR], 5-10) the day prior to FMT to 2 (IQR, 1-2) after the infusion. Self-ranked health score improved significantly, from a median of 4 (IQR, 2-6) before transplant to 8 (IQR, 5-9) after transplant. No serious or unexpected adverse events occurred. CONCLUSIONS: In our initial feasibility study, FMT using a frozen inoculum from unrelated donors is effective in treating relapsing CDI. NGT administration appears to be as effective as colonoscopic administration. CLINICAL TRIALS REGISTRATION: NCT01704937.


Asunto(s)
Terapia Biológica/métodos , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/terapia , Diarrea/terapia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Colonoscopía/métodos , Diarrea/microbiología , Femenino , Humanos , Intubación Gastrointestinal/métodos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Recurrencia , Encuestas y Cuestionarios , Resultado del Tratamiento , Donante no Emparentado , Adulto Joven
8.
PLoS One ; 7(6): e39242, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768065

RESUMEN

BACKGROUND: Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess differences in the microbiota of children with IBD and other gastrointestinal disorders. METHODOLOGY/PRINCIPAL FINDINGS: We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young adults who were treated in the gastroenterology program of Children's Hospital (Boston, USA). The developed method accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified taxa associated with disease states and distinguished patients with Crohn's disease from those with ulcerative colitis with reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity). CONCLUSIONS/SIGNIFICANCE: Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools, classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.


Asunto(s)
Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/microbiología , Metagenoma , Adolescente , Adulto , Antibacterianos/uso terapéutico , Biodiversidad , Niño , Preescolar , Estudios de Cohortes , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , Demografía , Diagnóstico Diferencial , Heces/microbiología , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/clasificación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Complejo de Antígeno L1 de Leucocito/metabolismo , Masculino , Metagenoma/genética , Inducción de Remisión , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Programas Informáticos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA