RESUMEN
SLC26A3 or Downregulated in adenoma (DRA) is the major Cl(-)/HCO3 (-) exchanger involved in electroneutral NaCl absorption in the mammalian intestine. Alterations in DRA function and expression have been implicated in diarrheal diseases associated with inflammation or infection. Therefore, agents that upregulate DRA activity may serve as potential antidiarrheals. In this regard, sphingosine-1-phosphate (S1P), a member of the bioactive sphingolipid family, has been shown to modulate various cellular processes including improvement of intestinal barrier function. However, the role of S1P in modulating intestinal chloride absorption by regulating DRA is not known. Therefore, the present studies were designed to examine the direct effects of S1P on apical Cl(-)/HCO3 (-) exchange activity and DRA expression. S1P significantly increased Cl(-)/HCO3 (-) exchange activity and also significantly increased DRA mRNA and protein expression. Increased DRA mRNA by S1P was accompanied by enhanced DRA promoter activity, indicating involvement of transcriptional mechanisms. The specific S1P receptor subtype-2 (S1PR2) antagonist JTE-013 blocked the stimulatory effects of S1P on DRA promoter activity, indicating the involvement of S1PR2 S1P-mediated increase in DRA promoter activity involved PI3K/Akt pathway. Progressive deletions of the DRA promoter indicated that the putative S1P-responsive elements are present in the -790/-398 region of the DRA promoter. Furthermore, results obtained from electrophoretic mobility shift assay showed that S1P stimulated DRA promoter activity via increased binding of Ying-Yang1 (YY1) in the S1P-responsive region. In conclusion, transcriptional modulation of DRA expression and function in response to S1P through a PI3/Akt pathway represents a novel role of S1P as a potential proabsorptive agent.
Asunto(s)
Antiportadores de Cloruro-Bicarbonato/metabolismo , Lisofosfolípidos/farmacología , Regiones Promotoras Genéticas , Esfingosina/análogos & derivados , Bicarbonatos/metabolismo , Células CACO-2 , Antiportadores de Cloruro-Bicarbonato/genética , Cloruros/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/farmacología , Transportadores de Sulfato , Factor de Transcripción YY1/metabolismoRESUMEN
Monocarboxylate transporter isoform-1 (MCT1) plays an important role in the absorption of short-chain fatty acids (SCFAs) in the colon. Butyrate, a major SCFA, serves as the primary energy source for the colonic mucosa, maintains epithelial integrity, and ameliorates intestinal inflammation. Previous studies have shown substrate (butyrate)-induced upregulation of MCT1 expression and function via transcriptional mechanisms. The present studies provide evidence that short-term MCT1 regulation by substrates could be mediated via a novel nutrient sensing mechanism. Short-term regulation of MCT1 by butyrate was examined in vitro in human intestinal C2BBe1 and rat intestinal IEC-6 cells and ex vivo in rat intestinal mucosa. Effects of pectin feeding on MCT1, in vivo, were determined in rat model. Butyrate treatment (30-120 min) of C2BBe1 cells increased MCT1 function {p-(chloromercuri) benzene sulfonate (PCMBS)-sensitive [(14)C]butyrate uptake} in a pertussis toxin-sensitive manner. The effects were associated with decreased intracellular cAMP levels, increased V(max) of butyrate uptake, and GPR109A-dependent increase in apical membrane MCT1 level. Nicotinic acid, an agonist for the SCFA receptor GPR109A, also increased MCT1 function and decreased intracellular cAMP. Pectin feeding increased apical membrane MCT1 levels and nicotinate-induced transepithelial butyrate flux in rat colon. Our data provide strong evidence for substrate-induced enhancement of MCT1 surface expression and function via a novel nutrient sensing mechanism involving GPR109A as a SCFA sensor.
Asunto(s)
Butiratos/farmacología , Mucosa Intestinal/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animales , Butiratos/metabolismo , Células CACO-2 , Línea Celular , Colforsina/farmacología , Colon/metabolismo , AMP Cíclico/agonistas , AMP Cíclico/metabolismo , Humanos , Mucosa Intestinal/efectos de los fármacos , Masculino , Niacina/farmacología , Pectinas/farmacología , Toxina del Pertussis/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/fisiología , Receptores Nicotínicos/fisiologíaRESUMEN
Green tea catechins exhibit hypocholesterolemic effects probably via their inhibitory effects on intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) is responsible for reabsorption of bile acids. The present studies were, therefore, designed to investigate the modulation of ASBT function and membrane expression by green tea catechins in human embryonic kidney HEK-293 cells stably transfected with ASBT-V5 fusion protein and intestinal Caco-2 monolayers. Our data showed that ASBT activity was significantly decreased by (-)-epigallocatechin-3-gallate (EGCG) but not other green tea catechins. Inhibition of PKC, phosphatidylinositol 3-kinase, and MAPK-dependent pathways failed to block the reduction in ASBT activity by EGCG. Kinetics studies showed a significant decrease in the V(max) of the transporter, whereas total ASBT content on the plasma membrane was unaltered by EGCG. Concomitant with the decrease in ASBT function, EGCG significantly reduced ASBT pool in the detergent-insoluble fraction, while increasing its presence in the detergent-soluble fraction of plasma membrane. Furthermore, EGCG decreased the association of ASBT with floating lipid raft fractions of cellular membrane on Optiprep density gradient. In conclusion, our data demonstrate a novel role of lipid rafts in the modulation of ASBT function by the dietary component EGCG, which may underlie the hypocholesterolemic effects of green tea.
Asunto(s)
Catequina/análogos & derivados , Íleon/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Simportadores/antagonistas & inhibidores , Té/química , Transporte Biológico/efectos de los fármacos , Biotinilación , Células CACO-2 , Catequina/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Humanos , Íleon/citología , Íleon/efectos de los fármacos , Cinética , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Octoxinol/farmacología , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteína Quinasa C/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Simportadores/genética , Simportadores/metabolismo , Ácido Taurocólico/metabolismo , TransfecciónRESUMEN
Downregulated in adenoma (DRA), also referred to as SLC26A3, is an intestinal anion transporter essential for intestinal chloride absorption. Mutations in DRA result in congenital chloride diarrhea. DRA expression has been shown to be induced by differentiation and to be modulated by cytokines. However, mechanisms of DRA gene transcription and its tissue-specific targeting have not yet been investigated. In this study, we cloned a 3,765-bp promoter fragment of human DRA gene and characterized its activity in human colonic LS174T and Caco-2 human colon cell lines. Primer extension identified a single transcriptional initiation site that was identical in both colon cancer cell lines and normal colon. Although hepatic nuclear factor HNF-4 is involved in the basal activity of DRA promoter, sodium butyrate induces its activity in LS174T cells via the binding of Yin Yang 1 (YY1) and GATA transcription factors to their respective cis-elements in promoter region. We also demonstrated a reduction in DRA promoter activity in Caco-2 cells by IFN-gamma, suggesting that regulation of DRA promoter by IFN-gamma may contribute to the pathophysiology of intestinal inflammation. Furthermore, we showed that the DRA promoter fragment is sufficient to drive human growth hormone transgene expression specifically in villus epithelial cells of the small intestine and in differentiated upper crypt and surface epithelial cells of the colon. Our studies provide evidence for the involvement of HNF-4, YY1, and GATA transcription factors in DRA expression in intestinal differentiated epithelial cells.