Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005229

RESUMEN

The leaves of the Aegle marmelos plant were used for the green synthesis of copper oxide nanoparticles and further characterized by different techniques, including (Ultra Violet-Visible) UV-Vis, Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The UV-Vis showed a peak at 330 nm, which may be due to the Surface Plasmon Resonance phenomenon. XRD analysis showed the crystalline nature of copper oxide nanoparticles (CuO NPs). In contrast, SEM showed that nanoparticles were not aggregated or clumped, EDX showed the presence of elemental copper., and further, the TEM analysis revealed the average particle size of copper oxide nanoparticles to be 32 nm. The Minimum Inhibitory Concentration (MIC) for Escherichia coli (E. coli) and Staphylococcusaureus (S. aureus) was found to be 400 µg/mL, whereas for Candida albicans (C. albicans) and Candida dubliniensis (C. dubliniensis) it was 800 µg/mL. The zone of inhibition in the well diffusion assay showed the antimicrobial activity of copper oxide nanoparticles, and it also showed that as the concentration of copper oxide nanoparticles increased, the zone of inhibition also increased. Further, the electron microscopic view of the interaction between copper oxide nanoparticles and C. albicans cells showed that CuO NPs were internalized and attached to the cell membrane, which caused changes in the cellular structure and caused deformities which eventually led to cell death. The prepared CuO NPs showed significant photocatalytic degradation of organic dyes in the presence of sunlight.


Asunto(s)
Aegle , Nanopartículas del Metal , Antibacterianos/química , Cobre/química , Nanopartículas del Metal/química , Escherichia coli , Staphylococcus aureus , Extractos Vegetales/química , Óxidos , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
2.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296735

RESUMEN

The by-product of the previous transesterification, glycerol was utilised as an acid catalyst precursor for biodiesel production. The crude glycerol was treated through the sulfonation method with sulfuric acid and chlorosulfonic acid in a reflux batch reactor giving solid glycerol-SO3H and glycerol-ClSO3H, respectively. The synthesised acidic glycerol catalysts were characterised by various analytical techniques such as thermalgravimetric analyser (TGA), infrared spectroscopy, surface properties adsorption-desorption by nitrogen gas, ammonia-temperature programmed desorption (NH3-TPD), X-ray diffraction spectroscopy (XRD), elemental composition analysis by energy dispersive spectrometer (EDX) and surface micrographic morphologies by field emission electron microscope (FESEM). Both glycerol-SO3H and glycerol-ClSO3H samples exhibited mesoporous structures with a low surface area of 8.85 mm2/g and 4.71 mm2/g, respectively, supported by the microscopic image of blockage pores. However, the acidity strength for both catalysts was recorded at 3.43 mmol/g and 3.96 mmol/g, which is sufficient for catalysing PFAD biodiesel at the highest yield. The catalytic esterification was optimised at 96.7% and 98.2% with 3 wt.% of catalyst loading, 18:1 of methanol-PFAD molar ratio, 120 °C, and 4 h of reaction. Catalyst reusability was sustained up to 3 reaction cycles due to catalyst deactivation, and the insight investigation of spent catalysts was also performed.


Asunto(s)
Biocombustibles , Glicerol , Esterificación , Metanol , Amoníaco , Aceites de Plantas/química , Catálisis , Ácidos Grasos , Nitrógeno
3.
Saudi J Biol Sci ; 28(12): 7190-7201, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34867022

RESUMEN

The diversity of natural phytochemicals represents an unlimited source for discovery and development of new drugs. Ochradenus arabicus, (family: Resedaceae) a notable medicinal plant displays a high content of flavonoid glycosides. This study investigates a possible preventative role of zinc nanoparticles biosynthesized by O. arabicus leaf extracts (OAZnO NPs) in limiting genotoxicity and cytotoxicity caused by indole acetic acid (IAA) in laboratory mice. ZnO NPs were synthesized using O. arabicus leaf extracts and characterized with UV-visible spectroscopy, scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The mice were randomly distributed into the following six groups: control, OAZnO NPs treated (10 mg/kg BW), IAA treated (50 mg/kg BW); simultaneous treatment, pre-treatment, and post-treatment. Reactive oxygen species (ROS), DNA damage, chromosome aberration, and apoptosis were analyzed as toxicity endpoints. IAA exposure significantly induced production of ROS, DNA damage, apoptosis, chromosome aberrations, and micronuclei. Pre-, post-, and simultaneous treatment with OAZnO NPs ameliorated the damage caused by IAA exposure. Exposure to OAZnO NPs alone caused no toxicity for any endpoint based on comparison to controls. This study demonstrated that IAA-induced cytotoxic damage in mice could be ameliorated by treatment with OAZnO NPs. These findings require additional verification in mechanistic and in vitro studies.

4.
Antioxidants (Basel) ; 10(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34943003

RESUMEN

Indian blackberry (Syzygium cumini L.) is an evergreen tree in the Myrtaceae family. It is used in traditional medicine due to its significant bioactivities and presence of polyphenols with antioxidant activities. The present study describes the effect of seasonal variations on Indian blackberry leaf essential oil yield and chemical composition, production of fractions from essential oil using high vacuum fractional distillation and slow cooling to low temperature (-50 °C) under vacuum, and bioactivities of the essential oil, fractions, and nanoparticles. The results show that Indian blackberry essential oil yield was higher in spring season as compared to winter season. Indian blackberry essential oil fractionation processes were effective in separating and concentrating compounds with desired bioactivities. The bioactivities shown by magnesium nanoparticles were comparatively higher than barium nanoparticles.

5.
Int J Biol Macromol ; 150: 941-947, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31765758

RESUMEN

Cactus pear peel as agricultural waste containing arabinogalactan and pectin was thermally treated at 300 °C for 4 h and the resultant carbonized material was applied as adsorbent for the removal of methylene blue dye as a model cationic dye. The prepared adsorbent was characterized by means FTIR for structural characterization, N2 physisoprtion measurements for texture properties, SEM and EDAX for morphological and elemental analysis. The characterization results clearly show that the prepared material is porous with several -OH and CO terminals. The point of zero charge was found to be 7 as detected by batch equilibrium method. The adsorption process was optimized in terms of pH values, contact time, initial dye concentration and temperature. The kinetic study indicated that the pseudo-second-order model can perfectly describe the investigated adsorption process; moreover, the equilibrium results were best fitted by Freundlich model. Furthermore, at pH 8.0, the adsorption capacity was achieved to the maximum value of methylene blue as 102 mg/g. Thermodynamic investigation showed that the adsorption process is spontaneous, endothermic in nature with higher entropy, while the activation energy calculations indicated a physisorption process. The obtained results showed the high potential of the bio-based adsorbent for removal of methylene blue from wastewater.


Asunto(s)
Análisis Costo-Beneficio , Galactanos/química , Opuntia/química , Pectinas/química , Termodinámica , Purificación del Agua/métodos , Adsorción , Colorantes/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Temperatura , Aguas Residuales , Agua , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA