Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111092

RESUMEN

Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of ß-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Reishi , Triterpenos , Humanos , Triterpenos/farmacología , Polisacáridos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
2.
Biomed Pharmacother ; 162: 114582, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36989727

RESUMEN

In the present study, in vitro, in vivo, and in silico models were used to evaluate the therapeutic potential of Pulmeria alba methanolic (PAm) extract, and we identified the major phytocompound, apigetrin. Our in vitro studies revealed dose-dependent increased glucose uptake and inhibition of α-amylase (50% inhibitory concentration (IC50)= 217.19 µg/mL), antioxidant (DPPH, ferric-reducing activity of plasma (FRAP), and lipid peroxidation (LPO) [IC50 = 103.23, 58.72, and 114.16 µg/mL respectively]), and anti-inflammatory potential (stabilizes human red blood cell (HRBC) membranes, and inhibits proteinase and protein denaturation [IC50 = 143.73, 131.63, and 198.57 µg/mL]) by the PAm extract. In an in vivo model, PAm treatment reversed hyperglycemia and attenuated insulin deficiency in rats with streptozotocin (STZ)-induced diabetes. A post-treatment tissue analysis revealed that PAm attenuated neuronal oxidative stress, neuronal inflammation, and neuro-cognitive deficiencies. This was evidenced by increased levels of antioxidants enzymes (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), and decreased malondialdehyde (MDA), proinflammatory markers (cyclooxygenase 2 (COX2), nuclear factor (NF)-κB and nitric oxide (NOx)), and acetylcholinesterase (AChE) activities in the brain of PAm-treated rats compared to the STZ-induced diabetic controls. However, no treatment-related changes were observed in levels of neurotransmitters, including serotonin and dopamine. Furthermore, STZ-induced dyslipidemia and alterations in serum biochemical markers of hepatorenal dysfunction were also reversed by PAm treatment. Extract characterization identified apigetrin (retention time: 21,227 s, 30.48%, m/z: 433.15) as the major bioactive compound in the PAm extract. Consequently, we provide in silico insights into the potential of apigetrin to target AChE/COX-2/NOX/NF-κB Altogether the present study provides preclinical evidence of the therapeutic potential of the apigetrin-enriched PAm extract for treating oxidative stress and neuro-inflammation associated with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Ratas , Humanos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Acetilcolinesterasa/metabolismo , Ratas Wistar , Glucemia/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Encéfalo/metabolismo , Inflamación/tratamiento farmacológico , Estreptozocina/uso terapéutico , Extractos Vegetales/farmacología
3.
Biomed Res Int ; 2023: 1777631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760474

RESUMEN

The objective of the present study was to develop a novel nanogel containing Beta vulgaris L. hydroalcoholic extract and assess its efficacy for treating testosterone-induced alopecia. Beta vulgaris L. leaf hydroalcoholic extract nanogel (BVEN) was prepared by ionic gelation method, incorporated in carbopol 934 gel. Optimization of particle size and entrapment efficiency as the responses was carried out by central composite design response surface methodology. Prepared nanoparticles were evaluated for entrapment efficiency, particle size, zeta potential, polydispersity index, Fourier transform infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Nanogel was evaluated for pH, colour, appearance and homogeneity, viscosity, spreadability, in vitro release study, and stability studies. Further, 2.5% and 5% BVEN were also evaluated for antialopecic activity in Swiss albino mice by using parameters as hair growth initiation, testosterone content, total protein, prostate weight measurement, hair follicular density, anagen/telogen ratio, and histopathological studies. The resulting nanoparticles had better entrapment efficiency with particle size of 274 nm, polydispersity index of 0.259, and zeta potential of +28.8. BVEN pH 6.5, drug content, i.e., quercetin 99.84 ± 1.30% and stigmasterol 99.89 ± 1.52%, spreadability 20.3 ± 0.5925 g cm/sec, and viscosity 110 × 105 cps were observed. Stability studies showed that nanogel was stable at 4°C ± 2°C/60% ± 5% RH. It was found that 5% BVEN showed better antialopecic activity as compared to 2.5% BVEN.


Asunto(s)
Beta vulgaris , Nanopartículas , Masculino , Animales , Ratones , Nanogeles , Testosterona , Nanopartículas/química , Alopecia/inducido químicamente , Alopecia/tratamiento farmacológico , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
4.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364163

RESUMEN

Plants are a promising source of bioactive compounds that can be used to tackle many emerging diseases both infectious and non-infectious. Among different plants, Acacia is a very large genus and exhibits a diverse array of bioactive agents with remarkable pharmacological properties against different diseases. Acacia, a herb found all over the world, contains approximately more than 1200 species of the Fabaceae family. In the present review, we have collected detailed information on biochemical as well as pharmacological properties. The data were retrieved using different databases, such as Elsevier, PubMed, Science Direct, Google Scholar, and Scopus, and an extensive literature survey was carried out. Studies have shown that Acacia possesses several secondary metabolites, including amines, cyanogenic glycosides, flavonoids, alkaloids, seed oils, cyclitols, fluoroacetate, gums, non-protein amino acids, diterpenes, fatty acids, terpenes, hydrolyzable tannins, and condensed tannins. These compounds exhibit a wide range of pharmaceutical applications such as anti-inflammatory, antioxidant, antidiarrheal, antidiabetic, anticancer, antiviral, liver protective effects, and so on. Thus, the literature shows the tremendous phytochemical impact of the genus Acacia in medicine. Overall, we recommend that more research should be conducted on the medicinal value and isolation and purification of the effective therapeutic agents from Acacia species for the treatment of various ailments.


Asunto(s)
Acacia , Medicina Tradicional , Etnofarmacología , Fitoterapia , Extractos Vegetales/química , Fitoquímicos/química
5.
Oxid Med Cell Longev ; 2022: 1215097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35941904

RESUMEN

The present study evaluated the polyphenolic contents and hypoglycemic, antioxidant, and anti-inflammatory effects of the diethyl ether fraction of Thespesia garckeana using various in vitro and in vivo models. Total phenol and flavonoid contents of the extract were 613.65 ± 2.38 and 152.83 ± 1.56 mg/100 g dry weight, respectively. The extract exhibited in vitro antioxidant activities against DPPH, FRAP, LPO, and ABTS with respective half-maximal inhibitory concentration (IC50) values of 30.91 ± 0.23, 16.81 ± 0.51, 41.29 ± 1.82, and 42.39 ± 2.24 µg/mL. In vitro anti-inflammatory studies using membrane stabilization, protein denaturation, and proteinase activities revealed the effectiveness of the extract with respective IC50 values of 54.45 ± 2.89, 93.62 ± 3.04, and 56.60 ± 2.34 µg/mL, while in vitro hypoglycemic analysis of the extract revealed inhibition of α-amylase (IC5064.59 ± 3.29 µg/mL) and enhancement of glucose uptake by yeast cells. Interestingly, the extract demonstrated in vivo hypoglycemic and anti-inflammatory effects in streptozotocin- (STZ-) induced diabetic and xylene-induced ear swelling models, respectively. In addition, the extract improved insulin secretion, attenuated pancreatic tissue distortion and oxidative stress, and increased the activities of superoxide dismutase (SOD), catalase, and reduced glutathione (GSH), while reducing the concentration of LPO in the diabetic rats. A high-performance liquid chromatography (HPLC) analysis identified the presence of catechin (6.81e - 1 ppm), rutin (8.46 e - 1 ppm), myricetin, apigenin (4.019 e - 1 ppm), and luteolin (15.09 ppm) with respective retention times (RTs) of 13.64, 24.269, 27.781, 29.58, and 32.23 min, and these were subjected to a pharmacoinformatics analysis, which revealed their drug-likeness and good pharmacokinetic properties. A docking analysis hinted at the potential of luteolin, the most abundant compound in the extract, for targeting glucose-metabolizing enzymes. Thus, the present study provides preclinical insights into the bioactive constituents of T. garckeana, its antioxidant and anti-inflammatory effects, and its potential for the treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Malus , Malvaceae , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Luteolina/farmacología , Luteolina/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Estreptozocina/uso terapéutico
6.
Int J Biol Macromol ; 187: 769-779, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34197853

RESUMEN

Ganoderma lucidum (G. lucidum) polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicine for ancient times. Massive demands of G. lucidum have fascinated the researchers towards its application as functional food, nutraceutical and modern medicine owing to wide range of application in various diseases include immunomodulators, anticancer, antiviral, antioxidant, cardioprotective, hepatoprotective. G. lucidum polysaccharides exhibit immunomodulatory properties through boosting the action of antigen-presenting cells, mononuclear phagocyte system, along with humoral and cellular immunity. ß-Glucans isolated from G. lucidum are anticipated to produce an immune response through pathogen associated molecular patterns (PAMPs). ß-Glucans after binding with dectin-1 receptor present on different cells include macrophages, monocytes, dendritic cells and neutrophils produce signal transduction that lead to trigger the mitogen-activated protein kinases (MAPKs), T cells and Nuclear factor-κB (NF-κB) that refer to cytokines production and contributing to immune response. While triterpenoids produce antiviral effects through inhibiting various enzymes like neuraminidase, HIV-protease, DENV2 NS2B-NS3 protease and HSV multiplication. Polysaccharides and triterpenoids adjunct to other drugs exhibit potential action in prevention and treatment of various diseases. Immunomodulators and antiviral properties of this mushroom could be a potential source to overcome this current pandemic outbreak.


Asunto(s)
Antivirales/farmacología , Sistema Inmunológico/efectos de los fármacos , Agentes Inmunomoduladores/farmacología , Reishi , Triterpenos/farmacología , Virosis/tratamiento farmacológico , beta-Glucanos/farmacología , Animales , Antivirales/aislamiento & purificación , Interacciones Huésped-Patógeno , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Agentes Inmunomoduladores/aislamiento & purificación , Estructura Molecular , Reishi/química , Transducción de Señal , Relación Estructura-Actividad , Triterpenos/aislamiento & purificación , Virosis/inmunología , Virosis/metabolismo , Virosis/virología , beta-Glucanos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA