Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38541120

RESUMEN

Background and Objectives: Diabetes mellitus is a chronic metabolic disease associated with several complications, including that of kidney disease. Plant-based dietary products have shown promise in mitigating these effects to improve kidney function and prevent tissue damage. This study assessed the possible favorable effects of beetroot extract (BE) in improving kidney function and preventing tissue damage in diabetic rats. Materials and Methods: Type 2 diabetes mellitus (T2DM) was induced using a low dose of streptozotocin (STZ). Both control and rats with pre-established T2DM were divided into six groups (each consisting of eight rats). All treatments were given by gavage and continued for 12 weeks. Fasting blood glucose levels, serum fasting insulin levels, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum triglycerides, cholesterol, low-density lipoprotein-cholesterol, serum and urinary albumin, and creatinine and urea levels were measured. Apart from this, glutathione, malondialdehyde, superoxide dismutase, tumor necrosis factor-α, and interleukine-6 in the kidney homogenates of all groups of rats were measured, and the histopathological evaluation of the kidney was also performed. Results: It was observed that treatment with BE increased body weight significantly (p ≤ 0.05) to be similar to that of control groups. Fasting glucose, insulin, HOMA-IR levels, and lipid profile in the plasma of the pre-established T2DM rats groups decreased to p ≤ 0.05 in the BE-treated rats as the BE concentration increased. Treatment with BE also improved the renal levels of oxidative stress and inflammatory markers, urinary albumin, and serum creatinine and urea levels. Unlike all other groups, only the kidney tissues of the T2DM + BE (500 mg/kg) rats group showed normal kidney tissue structure, which appears to be similar to those found in the kidney tissues of the control rats groups. Conclusion: we found that streptozotocin administration disturbed markers of kidney dysfunction. However, Beta vulgaris L. root extract reversed these changes through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


Asunto(s)
Beta vulgaris , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Beta vulgaris/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metanol/farmacología , Metanol/uso terapéutico , Estreptozocina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucemia , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Insulina , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Colesterol , Albúminas
2.
Nutrients ; 14(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014833

RESUMEN

This study examined if regulating the keap-1? Nrf2 antioxidant pathway mediated gold nanoparticles (AuNPs) induced liver damage, and examined the protective effect of co-supplement of α-lipoic acid (α-LA). Rats were separated into 4 groups (n = 8/each) as control, α-LA (200 mg/kg), AuNPs (5 µg/2.85 × 1011), and AuNPs (5 µg/2.85 × 1011) + α-LA (200 mg/kg). After 7 days, AuNPs induced severe degeneration in the livers of rats with the appearance of some fatty changes. In addition, it increased serum levels of alanine aminotransferase (ALT) and gamma-glutamyl transferase (É£-GTT), and aspartate aminotransferase (AST), as well as liver levels of malondialdehyde (MDA). Concomitantly, AuNPs significantly depleted hepatic levels of total glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) but increased hepatic levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). It also reduced mRNA levels of B-cell lymphoma 2 (Bcl2) and heme oxygenase-1 (HO-1) but significantly increased those of Bax and cleaved caspase-3, as well as the ratio of Bax/Bcl2. In addition, AuNPs enhanced the total and nuclear levels of NF-κB p65 but reduced the mRNA and total and nuclear protein levels of Nrf2. Of note, AuNPs did not affect the mRNA levels of keap-1. All these events were reversed by α-LA in the AuNPs-treated rats. In conclusion, α-LA attenuated AuNPs-mediated liver damage in rats by suppressing oxidative stress and inflammation, effects that are associated with upregulation/activation of Nrf2.


Asunto(s)
Nanopartículas del Metal , Ácido Tióctico , Animales , Glutatión/metabolismo , Oro/metabolismo , Oro/farmacología , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , ARN Mensajero/metabolismo , Ratas , Ácido Tióctico/farmacología , Proteína X Asociada a bcl-2/metabolismo
3.
Saudi J Biol Sci ; 29(8): 103346, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35784613

RESUMEN

The present study examined the phytochemical composition, antioxidant, antimicrobial properties, and molecular docking of different solvents extracts (methanol and water) of two medicinal plants, namely, Capparis spinosa L (CS) and Rumex nervosus (RN). Phytochemical analysis showed that total phenol, flavonoids, alkaloids, and vitamin C were significantly (P ≤ 0.05) higher in the methanolic extract of both plants than in other solvents. However, tannin content was significantly (P ≤ 0.05) high in the water extract for both plants. Chloroform and acetone extracts were significantly lower in phytochemicals than other solvents, therefore excluded in this study. GC-MS analysis showed one dominant compound in CS (isopropyl isothiocyanate) and two in RN (pyrogallol and palmitic acid). The antioxidant methods applied (DPPH, ABTS, ß-Carotene/linoleic acid assay, and reducing the power) showed that the methanolic extract of CS exerted higher activity in methanolic extract but lower than that of BHA standard. The methanolic extract of both plants inhibited the bacterial pathogens when a minimum inhibitory concentration (MIC) method was applied, compared to water extract with RN-methanolic extract had a lower inhibition concentration than CS-methanolic extract. The molecular interactions study revealed that the palmitic acid and pyrogallol interacted with the receptors' active site. This work concluded that CS and RN showed a remarkable antioxidant and antibacterial effect with the high antimicrobial activity of RN extract.

4.
Pharm Biol ; 60(1): 1137-1147, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35672152

RESUMEN

CONTEXT: Camel milk is used in traditional medicine to treat diabetes mellitus hypertension and other metabolic disorders. OBJECTIVE: This study evaluated the antisteatotic and antihypertensive effects of camel milk protein hydrolysate (CMH) in high fructose (HF)-fed rats and compared it with the effects afforded by the intact camel milk protein extract (ICM). MATERIALS AND METHODS: Adult male Wistar rats were divided into 6 groups (n = 8 each) as 1) control, 2) ICM (1000 mg/kg), 3) CMH (1000 mg/kg), 4) HF (15% in drinking water), 5) HF (15%) + ICM (1000 mg/kg), and 6) HF (15%) + CMH (1000 mg/kg). All treatments were given orally for 21 weeks, daily. RESULTS: Both ICM and CMH reduced fasting glucose and insulin levels, serum and hepatic levels of cholesterol and triglycerides, and serum levels of ALT and AST, angiotensin II, ACE, endothelin-1, and uric acid in HF-fed rats. In addition, both ICM and CMH reduced hepatic fat deposition in the hepatocytes and reduced hepatocyte damage. This was associated with an increase in the hepatic activity of AMPK, higher PPARα mRNA, reduced expression of fructokinase C, SREBP1, SREBP2, fatty acid synthase, and HMG-CoA-reductase. Both treatments lowered systolic and diastolic blood pressure. However, the effects of CMH on all these parameters were greater as compared to ICM. DISCUSSION AND CONCLUSIONS: The findings of this study encourage the use of CMH in a large-scale population and clinical studies to treat metabolic steatosis and hypertension.


Asunto(s)
Hígado Graso , Hipertensión , Animales , Camelus , Hígado Graso/tratamiento farmacológico , Fructosa , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hígado , Masculino , Proteínas de la Leche/metabolismo , Proteínas de la Leche/farmacología , Proteínas de la Leche/uso terapéutico , Ratas , Ratas Wistar , Triglicéridos
5.
Sci Prog ; 105(2): 368504221102751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619568

RESUMEN

This study tested the protective effect of Rumex nervous (R. nervosus) methanol extract against streptozotocin (STZ)-mediated type 1 diabetes mellitus (T1DM)-induced nephropathy in rats and examined if this protection involves activating the nuclear factor erythroid 2 related factor-2 (Nrf2). Rats were divided into control, R. nervous (300 mg), STZ (T1DM), STZ + R. nervosus (100, 200, or 300 mg/kg), and STZ + R. nervosus (300 mg/kg) + brusatol (an Nrf2 inhibitor). With no effect on fasting glucose and insulin levels, R. nervosus methanol extract preserved kidney histological structure and alterations kidney function markers (e.g. albumin, creatinine, and urine volume) in the STZ-diabetic rats. R. nervosus also reduced levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukine-6 (IL-6), nuclear levels of the nuclear factor kappa beta (NF-κB), and mRNA of caspase-3 and Bax in the kidneys of these diabetic rats. Concomitantly, it stimulated renal mRNA levels of Bcl2 and Nrf2, cytoplasmic and nuclear levels of Nrf2, and levels of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). All these effects were dose-dependent, with the maximum effect seen with the 300 mg/kg dose, all prevented by brusatol. Also, these effects occurred without any alteration in the transcription of the Kelch-like ECH-associated protein 1 (keap-1). Similar effects on levels of GSH, SOD, CAT, and NF-κB, as well as expression of Nrf2, were also observed in the kidney of control + R. nervous-treated rats. In conclusion, R. nervosus prevents diabetic nephropathy in rats by upregulating and activating Nrf2.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Extractos Vegetales , Rumex , Animales , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Glutatión , Metanol , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , ARN Mensajero , Rumex/química , Estreptozocina/toxicidad , Superóxido Dismutasa
6.
Nutrients ; 14(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35565759

RESUMEN

This study tested the anti-hyperlipidemic, hypoglycemic, hepatoprotective, and anti-inflammatory effects of whole pearl millet grain powder (MPG) and its ethanol extract (MPGethaolE) in obese rats fed a high-fat diet. The rats were divided into eight groups based on the treatments they received: control, high fat diet (HFD), HFD + MGE (25 mg/Kg), HFD + MPGethaolE (50 mg/Kg), HFD + MPGethaolE (100 mg/Kg), HFD + MPG (10%), HFD + MPG (20%), and HFD + MPG (30%). The final body weight, visceral, epididymal fat pads, and the liver weight were significantly decreased, in a dose-dependent manner, in HFD fed rats that were co-administered either the MPG powder or MPGethaolE. In the same line, serum levels of triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein-cholesterol (LDL-c), as well as fasting glucose, insulin, HOMA-IR, and serum levels of lipopolysaccharides (LPS), interleukine-6 (IL-6), interleukine-10 (IL-10), C-reactive protein (CRP), tumor necrosis factor (TNF-α), and adiponectin were progressively decreased while serum levels of high-density lipoproteins (HDL-c) were significantly increased when increasing the doses of both treatments. In conclusion, both the raw powder and ethanolic extract of MP have a comparative dose-dependent anti-obesity, hypoglycemic, hypolipidemic, anti-inflammatory, and anti-steatotic in HFD-fed rats.


Asunto(s)
Hiperlipidemias , Pennisetum , Animales , Colesterol , Dieta Alta en Grasa/efectos adversos , Etanol , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Obesidad/metabolismo , Extractos Vegetales/farmacología , Polvos , Ratas
7.
PLoS One ; 17(4): e0267499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35446915

RESUMEN

Flowering plants are valuable in numerous ways, including food/feed supply for living organisms, fuel production, and medicinal uses. Several plant extracts/products are used to treat variety of serious ailments in human and animals. Lavandula angustifolia is a flowering plant that possesses anti-inflammatory and anti-depressive medicinal properties. Cancer is a deadly disorder affecting millions of people globally. It affects several human organs, including liver, stomach, and lungs. Several researchers are doing efforts to eliminate the disease around the globe. In this study, Chang and Huh-7 liver cell lines were utilized as human normal hepatocyte model and innovation to mimic the liver environment. Cytotoxicity of L. angustifolia seed extracts was investigated at two different concentrations (50% and 100%) against Chang and Huh-7 liver cell lines by colorimetric assay which is used to assess cell metabolic activities. The Chang and Huh-7 liver cell lines were treated with L. angustifolia seeds extracts (50% and 100%) and incubated for 24 and 48 hours under standard conditions (37°C, 5% CO2). The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay was employed to quantify cell survival. Seed extracts of L. angustifolia exerted varied cytotoxic effects depending on the concentration and treatment duration. The results indicated that L. angustifolia seed extracts with 100% concentration exhibited the highest cytotoxicity against Huh-7 and Chang liver cell lines. In conclusion, L. angustifolia seed extracts exhibited cytotoxic activity which can be enhanced based on the concentration and treatment duration. The findings of the current study are critical for the development of novel herbal-based therapies for fatal disorders such as liver cancer. However, more investigations are required to reveal cytotoxicity mechanisms of L. angustifolia seed extracts.


Asunto(s)
Lavandula , Animales , Hepatocitos , Humanos , Hígado , Extractos Vegetales/farmacología , Semillas
8.
Pharm Biol ; 60(1): 25-37, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34870551

RESUMEN

CONTEXT: Ellagic acid (EA) is used in traditional medicine to treated hyperlipidaemia. OBJECTIVE: This study examined if AMPK mediates the anti-steatotic effect of ellagic acid (EA) in streptozotocin (STZ)-induced type 1 diabetes mellitus in rats. MATERIALS AND METHODS: Adult male Wistar rats (130 ± 10 g) were divided into 6 groups (n = 8 rats/group) as control, control + EA, control + EA + CC an AMPK inhibitor), T1DM, T1DM + EA, and T1DM + EA + CC. The treatments with EA (50 mg/kg/orally) and CC (200 ng/rat/i.p.) were given the desired groups for 12 weeks, daily. RESULTS: In T1DM-rats, EA reduced fasting glucose levels (44.8%), increased fasting insulin levels (92.8%), prevented hepatic lipid accumulation, and decreased hepatic and serum levels of total triglycerides (54% & 61%), cholesterol (57% & 48%), and free fatty acids (40% & 37%). It also reduced hepatic levels of ROS (62%), MDA (52%), TNF-α (62%), and IL-6 (57.2%) and the nuclear activity of NF-κB p65 (54%) but increased the nuclear activity of Nrf-2 (4-fold) and levels of GSH (107%) and SOD (87%). Besides, EA reduced downregulated SREBP1 (35%), SREBP2 (34%), ACC-1 (36%), FAS (38%), and HMG-CoAR (49%) but stimulated mRNA levels of PPARα (1.7-fold) and CPT1a (1.8-fold), CPT1b (2.9-fold), and p-AMPK (4-fold). All these events were prevented by the co-administration of CC. DISCUSSION AND CONCLUSIONS: These findings encourage the use of EA to treat hepatic disorders, and non-alcoholic fatty liver disease (NAFLD). Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Ácido Elágico/farmacología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Insulina/sangre , Masculino , Enfermedad del Hígado Graso no Alcohólico/etiología , Ratas , Ratas Wistar , Estreptozocina
9.
J Nutr Biochem ; 87: 108515, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017608

RESUMEN

This study investigated if the nephroprotective effect of Curcumin in streptozotocin-induced type 1 diabetes mellitus (DM) in rats involves downregulation/inhibition of p66Shc and examined the underlying mechanisms. Rats were divided into 4 groups (n = 12/group) as control, control + Curcumin (100 mg/kg), T1DM, and T1DM + Curcumin. Curcumin was administered orally to control or diabetic rats for 12 weeks daily. As compared to diabetic rats, Curcumin didn't affect either plasma glucose or insulin levels but significantly reduced serum levels of urea, blood urea nitrogen, and creatinine, and concurrently reduced albumin/protein urea and increased creatinine clearance. It also prevented the damage in renal tubules and mitochondria, mesangial cell expansion, the thickness of the basement membrane. Mechanistically, Curcumin reduced mRNA and protein levels of collagen I/III and transforming growth factor- ß-1 (TGF-ß1), reduced inflammatory cytokines levels, improved markers of mitochondrial function, and suppressed the release of cytochrome-c and the activation of caspase-3. In the kidneys of both control and diabetic rats, Curcumin reduced the levels of reactive oxygen species (ROS), increased mRNA levels of manganese superoxide dismutase (MnSOD) and gamma-glutamyl ligase, increased glutathione (GSH) and protein levels of Bcl-2 and MnSOD, and increased the nuclear levels of nuclear factor2 (Nrf2) and FOXO-3a. Besides, Curcumin reduced the nuclear activity of the nuclear factor-kappa B (NF-κB), downregulated protein kinase CßII (PKCßII), NADPH oxidase, and p66Shc, and decreased the activation of p66Shc. In conclusion, Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCßII/p66Shc axis.


Asunto(s)
Antioxidantes/uso terapéutico , Curcumina/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Proteína Quinasa C beta/antagonistas & inhibidores , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Proteína Forkhead Box O3/metabolismo , Masculino , Proteína Quinasa C beta/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/antagonistas & inhibidores , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
10.
Biomed Res Int ; 2020: 3712536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685475

RESUMEN

The second most biggest cancer worldwide is breast cancer. There is an increasing need for safer, effective, and affordable drug candidates from natural sources to treat breast cancer. In the present investigation, the anticancer effect of Cucurbita ficifolia Bouché (C. ficifolia) fruit extract was tested on the human breast cancer cells such as MCF-7. The cells were exposed with different doses of C. ficifolia, for the assessment of IC50 concentrations on the MCF-7 cell lines for 24 hs. The effect of C. ficifolia fruit extract on morphological and apoptotic changes were evaluated by specific fluorescence staining techniques and real-time PCR in a time-dependent manner for 24 hs and 48 hs. The IC50 value for C. ficifolia fruit extract was found to be 90 µg/mL. Morphological alteration and apoptotic distinctiveness aspect like chromatin condensation and nuclear fragmentation were noticed in C. ficifolia extract exposed breast cancer cells. Further, we observed that C. ficifolia extract-induced programmed cell death in the MCF-7 cells were mediated with the elevated expression of the tumor suppressor gene such as p53 and apoptotic markers such as caspase-8, caspase-9, caspase-3, fatty acid synthase (FAS), Fas-associated protein with death domain (FADD), Bcl-2 homologous antagonist/killer (BAK), and Bcl-2-associated X protein (BAX). These observations established that C. ficifolia significantly concealed the cell division and provoked p53/caspase-mediated programmed cell death. Further, we noticed that this cell death in MCF-7 cells is concentration and time dependent. As evaluated through the comet assay, C. ficifolia induced DNA damage; further upon increasing the duration of the treatment, the DNA damage was higher than before. Thus, our study concludes that C. ficifolia could serve as an effective anticancer agent through vital gene modulation.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Caspasas/metabolismo , Cucurbita/química , Frutas/química , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/genética , Neoplasias de la Mama/genética , Caspasas/genética , Daño del ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Coloración y Etiquetado
11.
Biofactors ; 44(3): 289-298, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29672963

RESUMEN

One of the worldwide metabolic health dilemma is nonalcoholic fatty liver diseases (NAFLD). Researchers are searching effective drug to manage NAFLD patients. One of the best way to manage the metabolic imperfection is through natural principal isolated from different sources. Butein, a natural compound known to have numerous pharmacological application. In the current study we assessed the therapeutic effect of butein administration on liver function tests, oxidative stress, antioxidants, lipid abnormalities, serum inflammatory cytokines, and mitochondrial reactive oxygen species levels, in rats with methionine-choline deficient (MCD) diet induced NAFLD. Male Wistar rats were treated with MCD diet with/without butein (200 mg/kg body wt. orally) for 6 weeks. The protective effect of butein, were evident from decreased transaminase activities, restoration of albumin, globulin, albumin/globulin ratio, and oxidants in serum (P < 0.01), further it improved liver antioxidant status (P < 0.01). Butein significantly lowered lipid profile parameters (P < 0.01), suppressed inflammatory cytokines (P < 0.01), and improved liver histology. Further to understand the possible mechanism behind the hepatoprotective and lipid lowering effect of butein, the activities of heme oxygenase (HO1), myeloperoxidase (MPO), and mitochondrial reactive oxygen species (ROS) were measured. We found that butein supplementation significantly decreased the activity of HO1 (P < 0.001), and increased the activity of MPO (P < 0.001). Furthermore butein attenuated mitochondrial ROS produced in NAFLD condition. Present study shows that butein supplementation restore liver function by altering liver oxidative stress, inflammatory markers, vital defensive enzyme activities, and mitochondrial ROS. In summary, butein has remarkable potential to develop effective hepato-protective drug. © 2018 BioFactors, 44(3):289-298, 2018.


Asunto(s)
Chalconas/farmacología , Deficiencia de Colina/tratamiento farmacológico , Dieta/efectos adversos , Hipolipemiantes/farmacología , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Administración Oral , Albúminas/metabolismo , Animales , Colina/metabolismo , Deficiencia de Colina/etiología , Deficiencia de Colina/metabolismo , Deficiencia de Colina/patología , Globulinas/metabolismo , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemo Oxigenasa (Desciclizante)/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Metionina/deficiencia , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Peroxidasa/antagonistas & inhibidores , Peroxidasa/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transaminasas/antagonistas & inhibidores , Transaminasas/metabolismo
12.
Biomed Pharmacother ; 89: 215-220, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28231542

RESUMEN

Cucurbita ficifolia (C. ficifolia) has been traditionally known for its medicinal properties as an antioxidant, anti-diabetic and anti-inflammatory agent. However, there has been an enduring attention towards the identification of unique method, to isolate the natural components for therapeutic applications. Our study focuses on different polar and non-polar solvents (methanol, hexane and chloroform) to extract the bioactive components from C. ficifolia (pumpkin) and to study the biocompatibility and cytotoxicity effects on human bone marrow-mesenchymal stem cells (hBM-MSCs). The extracts were screened for their effects on cytotoxicity, cell proliferation and cell cycle on the hBM-MSCs cell line. The assays demonstrated that the chloroform extract was highly biocompatible, with less cytotoxic effect, and enhanced the cell proliferation. The methanol extract did not exhibit significant cytotoxicity when compare to the control. Concordantly, the cell cycle analysis confirmed that chloroform extract enhances the proliferation at lower concentrations. On the other hand, hexane extract showed high level of cytotoxicity with apoptotic and necrotic changes in hBM-MSCs. Collectively, our data revealed that chloroform is a good candidate to extract the bioactive components from C. ficifolia. Furthermore, our results suggest that specific gravity and density of the solvent might play a crucial role in the extraction process, which warrants further investigations.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Cucurbita/química , Células Madre Mesenquimatosas/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , Humanos , Solventes/química
13.
Biomed Pharmacother ; 87: 388-396, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28068628

RESUMEN

Systematic analyses of plants that are used in traditional medicine may lead to the discovery of novel cytotoxic secondary metabolites. Diterpene possesses multiple bioactivities; here, epoxy clerodane diterpene (ECD) was isolated from Tinospora cordifolia (Willd.) stem and shown potential antiproliferative effect in MCF-7 human breast cancer cells. The antiproliferative effect of ECD on MCF-7 cells was systematically analyzed by cell and nuclear morphology, alterations in oxidative stress, and the expression of tumor suppressor and mitochondria-mediated apoptosis-related genes. We found that the IC50 value of ECD was 3.2µM at 24h and 2.4µM at 48h. We observed that the cytotoxicity of ECD was specific to MCF-7 cells, whereas ECD was nontoxic to normal Vero and V79 cells. ECD significantly triggered intracellular ROS generation even from the lower doses of 0.6 and 1.2µM; and it is relative to higher dose of 2.4µM. Further, we used 0.6µM, 1.2µM and 2.4µM as experimental doses to analyze the relative dose-dependent effects. Nuclear staining revealed that cells treated with the 2.4µM dose exhibited characteristic apoptotic morphological changes and that 46% of the cells were apoptotic and 4% were necrotic after 48h. ECD significantly increased the expression of mitochondria-dependent apoptotic pathway-related genes after 48h; we observed significantly (p≤0.05) increased expression of CYP1A, GPX, GSK3ß and TNF-α and downregulated expression of NF-κB. ECD also increased the expression of tumor suppressor genes such as Cdkn2A, Rb1 and p53. In addition, we observed that ECD treatment significantly (p≤0.001) upregulated the expression of apoptotic genes such as Bax, cas-3, cas-8, cas-9 and p21 and downregulated the expression of BCL-2, mdm2 and PCNA. In conclusion, ECD regulates the expression of Cdkn2A, p53 and mdm2 and induces apoptosis via the mitochondrial pathway in MCF-7 human breast cancer cells.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Diterpenos de Tipo Clerodano/farmacología , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas de Unión a Retinoblastoma/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Humanos , Células MCF-7 , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , FN-kappa B/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA