Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Omega ; 5(25): 15666-15672, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32637841

RESUMEN

Chelation therapy is one of the most effective and widely accepted methods of treatment to reduce metal toxicity caused by an excess amount of essential metals. Essential minerals play an important role in maintaining healthy human physiology. However, the presence of an excess amount of such essential metals can cause cell injury, which finally leads to severe life-threatening diseases. Chelating complexes can efficiently capture the targeted metal and can easily be excreted from the body. Commonly utilized metal chelators have major side effects including long-term damage to some organs, which has pointed out the need of less harmful biocompatible chelating agents. In this work, we have investigated the iron chelating property of curcumin through various spectroscopic tools by synthesizing and characterizing the iron-curcumin (Fe-Cur) complex. We have also investigated whether the synthesized materials are able to retain their antioxidant activity after the chelation of a substantial amount of metal ion. Our study unravels the improved antioxidant activity of the synthesized chelate complex. We further demonstrate that the proposed complex generates no significant reactive oxygen species (ROS) under dark conditions, which makes it a promising candidate for chelation therapy of iron toxicity. Femtosecond-resolved fluorescence studies further provide insight into the mechanism of activity of the new complex where electron transfer from ligand to metal has been observed prominently. Thus, the Fe-Cur complex has a potential to act as a dual activity medicine for excretion of toxic metal ions via chelation and as a therapeutic agent of oxidative stress caused by the metal ion as well.

2.
Sci Rep ; 10(1): 11149, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636410

RESUMEN

The study was aimed to evaluate the performance of a newly developed non-invasive and non-contact bilirubin measurement device (AJO-Neo) as an alternative to the conventional invasive biochemical method of total serum bilirubin (TSB) estimation in preterm and term neonates suffering from hyperbilirubinemia associated with risk factors, and/or undergoing phototherapy. The safety and efficacy of the device were assessed in 1968 neonates with gestational ages ranging from 28 to 41 weeks and suffering from incidences of hyperbilirubinemia. Linear regression analysis showed a good correlation between AJO-Neo and the conventional method of TSB (Pearson's coefficient, r = 0.79). The small bias (0.27 mg/dL) and limits of agreements (- 3.44 to 3.99 mg/dL) were within the range of clinical acceptance. The device was also precise in the measurement of bilirubin levels in all subgroups of the study. The receiver operator curve (ROC), that takes account of both sensitivity and specificity of a device showed high efficacy of the device (area under the curve, AUC = 0.83) in the detection of bilirubin. While monitoring the bilirubin level during phototherapy, the device indicated promising results showing good agreement with TSB. Specificities and sensitivities of the device indicated a much higher accuracy in neonates with associated risk factors for hyperbilirubinemia. Hence, the newly developed device (AJO-Neo) is reliable in measuring bilirubin level in preterm, and term neonates irrespective of gestational or postnatal age, sex, risk factors, feeding behavior or skin color.


Asunto(s)
Bilirrubina/sangre , Hiperbilirrubinemia Neonatal/diagnóstico , Peso al Nacer , Femenino , Edad Gestacional , Humanos , Hiperbilirrubinemia Neonatal/sangre , Recién Nacido , Masculino , Estudios Prospectivos , Curva ROC , Reproducibilidad de los Resultados , Factores de Riesgo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA