Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686590

RESUMEN

Mammalian hearing depends on an amplification process involving prestin, a voltage-sensitive motor protein that enables cochlear outer hair cells (OHCs) to change length and generate force. However, it has been questioned whether this prestin-based somatic electromotility can operate fast enough in vivo to amplify cochlear vibrations at the high frequencies that mammals hear. In this study, we measured sound-evoked vibrations from within the living mouse cochlea and found that the top and bottom of the OHCs move in opposite directions at frequencies exceeding 20 kHz, consistent with fast somatic length changes. These motions are physiologically vulnerable, depend on prestin, and dominate the cochlea's vibratory response to high-frequency sound. This dominance was observed despite mechanisms that clearly low-pass filter the in vivo electromotile response. Low-pass filtering therefore does not critically limit the OHC's ability to move the organ of Corti on a cycle-by-cycle basis. Our data argue that electromotility serves as the primary high-frequency amplifying mechanism within the mammalian cochlea.


Asunto(s)
Células Ciliadas Auditivas Externas/fisiología , Órgano Espiral/fisiología , Estimulación Acústica , Animales , Cóclea/fisiología , Electrofisiología , Femenino , Audición/fisiología , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Mutantes , Modelos Biológicos , Proteínas Motoras Moleculares/deficiencia , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/fisiología , Movimiento/fisiología , Dinámicas no Lineales , Sonido , Tomografía de Coherencia Óptica , Vibración
2.
Hear Res ; 327: 143-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26074304

RESUMEN

Human sound source localization relies on acoustical cues, most importantly, the interaural differences in time and level (ITD and ILD). For reaching a unified representation of auditory space the auditory nervous system needs to combine the information provided by these two cues. In search for such a unified representation, we conducted a magnetoencephalography (MEG) experiment that took advantage of the location-specific adaptation of the auditory cortical N1 response. In general, the attenuation caused by a preceding adaptor sound to the response elicited by a probe depends on their spatial arrangement: if the two sounds coincide, adaptation is stronger than when the locations differ. Here, we presented adaptor-probe pairs that contained different localization cues, for instance, adaptors with ITD and probes with ILD. We found that the adaptation of the N1 amplitude was location-specific across localization cues. This result can be explained by the existence of auditory cortical neurons that are sensitive to sound source location independent on which cue, ITD or ILD, provides the location information. Such neurons would form a cue-independent, unified representation of auditory space in human auditory cortex.


Asunto(s)
Corteza Auditiva/fisiología , Señales (Psicología) , Localización de Sonidos , Percepción Espacial , Estimulación Acústica , Adaptación Psicológica , Adulto , Audiometría , Vías Auditivas/fisiología , Umbral Auditivo , Potenciales Evocados Auditivos , Femenino , Humanos , Magnetoencefalografía , Masculino , Psicoacústica , Factores de Tiempo
3.
Hear Res ; 323: 99-106, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25668126

RESUMEN

Human sound source localization relies on various acoustical cues one of the most important being the interaural time difference (ITD). ITD is best detected in the fine structure of low-frequency sounds but it may also contribute to spatial hearing at higher frequencies if extracted from the sound envelope. The human brain mechanisms related to this envelope ITD cue remain unexplored. Here, we tested the sensitivity of the human auditory cortex to envelope ITD in magnetoencephalography (MEG) recordings. We found two types of sensitivity to envelope ITD. First, the amplitude of the auditory cortical N1m response was smaller for zero envelope ITD than for long envelope ITDs corresponding to the sound being in opposite phase in the two ears. Second, the N1m response amplitude showed ITD-specific adaptation for both fine-structure and for envelope ITD. The auditory cortical sensitivity was weaker for envelope ITD in high-frequency sounds than for fine-structure ITD in low-frequency sounds but occurred within a range of ITDs that are encountered in natural conditions. Finally, the participants were briefly tested for their behavioral ability to detect envelope ITD. Interestingly, we found a correlation between the behavioral performance and the neural sensitivity to envelope ITD. In conclusion, our findings show that the human auditory cortex is sensitive to ITD in the envelope of high-frequency sounds and this sensitivity may have behavioral relevance.


Asunto(s)
Corteza Auditiva/fisiología , Señales (Psicología) , Localización de Sonidos , Estimulación Acústica , Adulto , Audiometría de Tonos Puros , Femenino , Humanos , Magnetoencefalografía , Masculino , Psicoacústica , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA