Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33062011

RESUMEN

Traditional folk therapies indicate that insects have diverse medicinal potentials. However, the therapeutic application of insect chitosan and its derivatives has not been explored. To investigate the application of chitosan and its derivatives, the carboxymethyl derivative of chitosan (CM-Ch) was extracted from two dipteran larvae species, Chrysomya albiceps and Sarcophaga aegyptiaca. The degree of deacetylation (DD) and CM-Ch functional groups were validated using Fourier-transform infrared (FTIR) spectroscopy analysis and proton nuclear magnetic resonance spectroscopy (1H NMR), respectively. The molecular weight was estimated using MALDI-TOF MS analysis. The effect of CM-Ch on the morphology and proliferation of human liver HepG2 cancer cells was assessed. IC50 of CM-Ch induced significant growth-inhibitory effects in HepG2 cells. CM-Ch treatment altered the morphology of HepG2 in a dose-dependent manner and induced apoptosis in a caspase-dependent manner. CM-Ch treatment showed no signs of toxicity, and no alterations in liver and kidney biochemical markers were observed in albino rats. A CM-Ch derivative from commercial crustacean chitosan was used to assess the efficacy of the insect-derived CM-Ch. The data presented here introduce insect CM-Ch as a promising, inexhaustible, safe derivative of chitosan with antitumor potential in liver cancer. This is the first report highlighting the anticancer activity of insect CM-Ch in hepatocellular carcinoma cells.

2.
Mikrochim Acta ; 187(9): 535, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870397

RESUMEN

An innovative ultrasensitive electrochemical aptamer-based sensor was developed for ochratoxin A (OTA) detection in cold brew coffee through revolutionary combination of nanofibers, electrochemical method, and aptamer technologies. The assembly of the aptasensor was based on the activation of silanized cellulose nanofibrous membranes as a supporting matrix for methylene blue (MB) redox probe-labeled aptamer tethering. Cellulose nanofibrous membranes were regenerated by deacetylating electrospun cellulose acetate nanofibrous membranes with deacetylation efficacy of 97%, followed by silanization of the nanofiber surfaces by using (3-aminopropyl)triethoxysilane (APTES). A replacement of conventionally casted membranes by the nanofibrous membranes increased the active surface area on the working electrode of a screen-printed three-electrode sensor by more than two times, consequently enhancing the fabricated aptasensor performance. The developed aptasensor demonstrated high sensitivity and specificity toward OTA in a range 0.002-2 ng mL-1, with a detection limit of 0.81 pg mL-1. Moreover, the assembled aptamer-based sensor successfully detected OTA in cold brew coffee samples without any pretreatment. The aptasensor exhibited good reusability and stability over long storage time. Graphical abstract.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Celulosa/química , Técnicas Electroquímicas/métodos , Nanofibras/química , Ocratoxinas/análisis , Café/química , Contaminación de Alimentos/análisis , Ácidos Nucleicos Inmovilizados/química , Límite de Detección , Azul de Metileno/química , Ocratoxinas/química , Oxidación-Reducción , Propilaminas/química , Silanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA