Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 319: 115765, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35982566

RESUMEN

The aim of this study was to explore the dynamic of microbial community and metabolic function in food waste composting amended with traditional Chinese medicine residues (TCMRs). Results suggested that TCMRs addition at up to 10% leads to a higher peak temperature (60.5 °C), germination index (GI) value (119.26%), and a greater reduction in total organic carbon (TOC) content (8.08%). 10% TCMRs significantly induced the fluctuation of bacterial community composition, as well as the fungal community in the thermophilic phase. The addition of 10% TCMRs enhanced the abundance of bacterial genera such as Acetobacter, Bacillus, and Brevundimonas, as well as fungal genera such as Chaetomium, Thermascus, and Coprinopsis, which accelerated lignocellulose degradation and humification degree. Conversely, the growth of Lactobacillus and Pseudomonas was inhibited by 10% TCMRs to weaken the acidic environment and reduce nitrogen loss. Metabolic function analysis revealed that 10% TCMRs promoted the metabolism of carbohydrate and amino acid, especially citrate cycle, glycolysis/gluconeogenesis, and cysteine and methionine metabolism. Redundancy analysis showed that the carbon to nitrogen (C/N) ratio was the most significant environmental factor influencing the dynamic of bacterial and fungal communities.


Asunto(s)
Compostaje , Microbiota , Eliminación de Residuos , Bacterias/metabolismo , Carbono/metabolismo , Alimentos , Estiércol , Medicina Tradicional China , Nitrógeno/metabolismo , Suelo
2.
Bioresour Technol ; 359: 127487, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35724906

RESUMEN

This work explored the microbial mechanisms for the improvement of composting efficiency driven by thermotolerant lignin-degrading bacterium Aneurinibacillus sp. LD3 (LD3). Results showed that LD3 inoculant prolonged the thermophilic period by 4 days, improved the final content of humic acid, total phosphorus (TP), nitrogen, potassium and seed germination index. Inoculating LD3 enhanced the relative abundance of thermotolerant and phosphate-solubilizing microbes including the phyla of Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota, and the genus of Bacillus, Thermoactinomyces, and Pseudomonas. Metabolic function analysis showed that sequences involved in carbohydrate and amino acid metabolism were boosted, while sequences associated with human disease were reduced after inoculating LD3. Spearman correlation analysis revealed that Aneurinibacillus has a significant positive correlation with temperature, TP, Bacillus, and Thermoactinomyces. This study provides useful information for understanding the microbial mechanisms of LD3 promoting composting efficiency, and reveals the tremendous potential of LD3 in the resource utilization of organic solid wastes.


Asunto(s)
Bacillus , Compostaje , Bacterias , Humanos , Sustancias Húmicas , Estiércol , Nitrógeno , Fósforo , Suelo
3.
Crit Rev Biotechnol ; 42(2): 271-293, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34151645

RESUMEN

A readily distinguishable and indigenous member of the plant kingdom in the Indian subcontinent is the 'drumstick tree', i.e. Moringa oleifera Lam. In addition to India, this drought-tolerant and rapidly evolving tree is currently extensively disseminated across the globe, including subtropical and tropical areas. The plant boasts a high nutritional, nutraceutical and therapeutic profile, mainly attributing to its significant repertoire of the biologically active components in different parts: protein, flavonoids, saponins, phenolic acids, tannin, isothiocyanate, lipids, minerals, vitamins, amongst others. M. oleifera seeds have been shown to elicit a myriad of pharmacological potential and health benefits, including: antimicrobial, anticancer, antidiabetic, antioxidant, antihypertensive, anti-inflammatory and cardioprotective properties. Additionally, the seed cakes obtained from post-extraction process are utilized for: coagulation, flocculation and sedimentation purposes, benefiting effluent management and the purification of water, mainly because of their capability in eliminating microbes and organic matter. Despite the extraordinary focus on other parts of the plant, especially the foliage, the beneficial aspects of the seeds have not been sufficiently highlighted. The health benefits of bioactive components in the seeds are promising and demonstrate enough potential to facilitate the development of functional foods. In this review, we present a critical account of the types, characteristics, production and isolation of bioactive components from M. oleifera seeds. Furthermore, we appraise the: pharmacological activities, cosmetic, biodiesel, lubricative, modern farming, nutritive and wastewater treatment applications of these functional ingredients. We infer that there is a need for further human/clinical studies and evaluation, despite their health benefits. Additionally, the safety issues need to be adequately clarified and assessed, in order to establish a conventional therapeutic profile.


Asunto(s)
Moringa oleifera , Extractos Vegetales , Semillas/química , Antioxidantes/farmacología , Suplementos Dietéticos , Flavonoides , Moringa oleifera/química , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA