Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochim Biophys Acta Bioenerg ; 1864(2): 148961, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36812958

RESUMEN

Refsum disease is an inherited peroxisomal disorder caused by severe deficiency of phytanoyl-CoA hydroxylase activity. Affected patients develop severe cardiomyopathy of poorly known pathogenesis that may lead to a fatal outcome. Since phytanic acid (Phyt) concentrations are highly increased in tissues of individuals with this disease, it is conceivable that this branched-chain fatty acid is cardiotoxic. The present study investigated whether Phyt (10-30 µM) could disturb important mitochondrial functions in rat heart mitochondria. We also determined the influence of Phyt (50-100 µM) on cell viability (MTT reduction) in cardiac cells (H9C2). Phyt markedly increased mitochondrial state 4 (resting) and decreased state 3 (ADP-stimulated) and uncoupled (CCCP-stimulated) respirations, besides reducing the respiratory control ratio, ATP synthesis and the activities of the respiratory chain complexes I-III, II, and II-III. This fatty acid also reduced mitochondrial membrane potential and induced swelling in mitochondria supplemented by exogenous Ca2+, which were prevented by cyclosporin A alone or combined with ADP, suggesting the involvement of the mitochondrial permeability transition (MPT) pore opening. Mitochondrial NAD(P)H content and Ca2+ retention capacity were also decreased by Phyt in the presence of Ca2+. Finally, Phyt significantly reduced cellular viability (MTT reduction) in cultured cardiomyocytes. The present data indicate that Phyt, at concentrations found in the plasma of patients with Refsum disease, disrupts by multiple mechanisms mitochondrial bioenergetics and Ca2+ homeostasis, which could presumably be involved in the cardiomyopathy of this disease.


Asunto(s)
Cardiomiopatías , Enfermedad de Refsum , Ratas , Animales , Enfermedad de Refsum/metabolismo , Ácido Fitánico/farmacología , Ácido Fitánico/metabolismo , Calcio/metabolismo , Ratas Wistar , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/metabolismo , Metabolismo Energético , Mitocondrias Cardíacas/metabolismo , Ácidos Grasos/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Homeostasis
2.
Neuroscience ; 471: 115-132, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333063

RESUMEN

D-2-hydroxyglutaric acid (D-2-HG) accumulates and is the biochemical hallmark of D-2-hydroxyglutaric acidurias (D-2-HGA) types I and II, which comprehend two inherited neurometabolic diseases with severe cerebral abnormalities. Since the pathogenesis of these diseases is poorly established, we tested whether D-2-HG could be neurotoxic to neonatal rats. D-2-HG intracerebroventricular administration caused marked vacuolation in cerebral cortex and striatum. In addition, glial fibrillary acidic protein (GFAP), S-100 calcium binding protein B (S100B) and ionized calcium-binding adapter molecule 1 (Iba-1) staining was increased in both brain structures, suggesting glial reactivity and microglial activation. D-2-HG also provoked a reduction of NeuN-positive cells in cerebral cortex, signaling neuronal death. Considering that disturbances in redox homeostasis and energy metabolism may be involved in neuronal damage and glial reactivity, we assessed whether D-2-HG could induce oxidative stress and bioenergetics impairment. D-2-HG treatment significantly augmented reactive oxygen and nitrogen species generation, provoked lipid peroxidation and protein oxidative damage, diminished glutathione concentrations and augmented superoxide dismutase and catalase activities in cerebral cortex. Increased reactive oxygen species generation, lipoperoxidation and protein oxidation were also found in striatum. Furthermore, the antagonist of NMDA glutamate receptor MK-801 and the antioxidant melatonin were able to prevent most of D-2-HG-induced pro-oxidant effects, implying the participation of these receptors in D-2-HG-elicited oxidative damage. Our results also demonstrated that D-2-HG markedly reduced the respiratory chain complex IV and creatine kinase activities. It is presumed that these deleterious pathomechanisms caused by D-2-HGA may be involved in the brain abnormalities characteristic of early-infantile onset D-2-HGA.


Asunto(s)
Microglía , Estrés Oxidativo , Animales , Animales Recién Nacidos , Corteza Cerebral , Metabolismo Energético , Glutaratos , Ratas
3.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165682, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31931102

RESUMEN

Propionic acidemia is caused by lack of propionyl-CoA carboxylase activity. It is biochemically characterized by accumulation of propionic (PA) and 3-hydroxypropionic (3OHPA) acids and clinically by severe encephalopathy and cardiomyopathy. High urinary excretion of maleic acid (MA) and 2-methylcitric acid (2MCA) is also found in the affected patients. Considering that the underlying mechanisms of cardiac disease in propionic acidemia are practically unknown, we investigated the effects of PA, 3OHPA, MA and 2MCA (0.05-5 mM) on important mitochondrial functions in isolated rat heart mitochondria, as well as in crude heart homogenates and cultured cardiomyocytes. MA markedly inhibited state 3 (ADP-stimulated), state 4 (non-phosphorylating) and uncoupled (CCCP-stimulated) respiration in mitochondria supported by pyruvate plus malate or α-ketoglutarate associated with reduced ATP production, whereas PA and 3OHPA provoked less intense inhibitory effects and 2MCA no alterations at all. MA-induced impaired respiration was attenuated by coenzyme A supplementation. In addition, MA significantly inhibited α-ketoglutarate dehydrogenase activity. Similar data were obtained in heart crude homogenates and permeabilized cardiomyocytes. MA, and PA to a lesser degree, also decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and Ca2+ retention capacity, and caused swelling in Ca2+-loaded mitochondria. Noteworthy, ΔΨm collapse and mitochondrial swelling were fully prevented or attenuated by cyclosporin A and ADP, indicating the involvement of mitochondrial permeability transition. It is therefore proposed that disturbance of mitochondrial energy and calcium homeostasis caused by MA, as well as by PA and 3OHPA to a lesser extent, may be involved in the cardiomyopathy commonly affecting propionic acidemic patients.


Asunto(s)
Maleatos/metabolismo , Mitocondrias Cardíacas/patología , Mioblastos Cardíacos/patología , Propionatos/metabolismo , Animales , Calcio/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Fraccionamiento Celular , Línea Celular , Metabolismo Energético , Humanos , Masculino , Mitocondrias Cardíacas/metabolismo , Dilatación Mitocondrial , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Oxígeno/análisis , Oxígeno/metabolismo , Acidemia Propiónica/complicaciones , Acidemia Propiónica/metabolismo , Acidemia Propiónica/patología , Ratas
4.
Toxicol In Vitro ; 62: 104665, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31629068

RESUMEN

cis-5-Tetradecenoic (cis-5) and myristic (Myr) acids predominantly accumulate in patients affected by very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. They commonly manifest myopathy with muscular pain and rhabdomyolysis, whose underlying mechanisms are poorly known. Thus, in the present study we investigated the effects of cis-5 and Myr on mitochondrial bioenergetics and Ca2+ homeostasis in rat skeletal muscle. cis-5 and Myr decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration, especially when mitochondria were supported by NADH-linked as compared to FADH2-linked substrates. In contrast, these fatty acids increased resting respiration (state 4). Similar effects were observed in skeletal muscle fibers therefore validating the data obtained with isolated mitochondria. Furthermore, cis-5 and Myr markedly decreased mitochondrial membrane potential and Ca2+ retention capacity that were avoided by cyclosporin A plus ADP and ruthenium red, indicating that cis-5 and Myr induce mitochondrial permeability transition (MPT). Finally, docosanoic acid did not disturb mitochondrial homeostasis, indicating selective effects for Myr and cis-5. Taken together, our findings indicate that major long-chain fatty acids accumulating in VLCAD deficiency behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and MPT inducers. It is presumed that these pathomechanisms contribute to the muscular symptoms and rhabdomyolysis observed in patients affected by VLCAD deficiency.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Síndromes Congénitos de Insuficiencia de la Médula Ósea/metabolismo , Errores Innatos del Metabolismo Lipídico/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/metabolismo , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/metabolismo , Ácidos Mirísticos/toxicidad , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Animales , Calcio/metabolismo , Metabolismo Energético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Ratas Wistar
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2192-2201, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28624490

RESUMEN

Hydrogen sulfide (sulfide) accumulates at high levels in brain of patients with ethylmalonic encephalopathy (EE). In the present study, we evaluated whether sulfide could disturb energy and redox homeostasis, and induce mitochondrial permeability transition (mPT) pore opening in rat brain aiming to better clarify the neuropathophysiology of EE. Sulfide decreased the activities of citrate synthase and aconitase in rat cerebral cortex mitochondria, and of creatine kinase (CK) in rat cerebral cortex, striatum and hippocampus supernatants. Glutathione prevented sulfide-induced CK activity decrease in the cerebral cortex. Sulfide also diminished mitochondrial respiration in cerebral cortex homogenates, and dissipated mitochondrial membrane potential (ΔΨm) and induced swelling in the presence of calcium in brain mitochondria. Alterations in ΔΨm and swelling caused by sulfide were prevented by the combination of ADP and cyclosporine A, and by ruthenium red, indicating the involvement of mPT in these effects. Furthermore, sulfide increased the levels of malondialdehyde in cerebral cortex supernatants, which was prevented by resveratrol and attenuated by glutathione, and of thiol groups in a medium devoid of brain samples. Finally, we verified that sulfide did not alter cell viability and DCFH oxidation in cerebral cortex slices, primary cortical astrocyte cultures and SH-SY5Y cells. Our data provide evidence that bioenergetics disturbance and lipid peroxidation along with mPT pore opening are involved in the pathophysiology of brain damage observed in EE.


Asunto(s)
Encefalopatías Metabólicas Innatas/metabolismo , Corteza Cerebral/metabolismo , Metabolismo Energético/efectos de los fármacos , Sulfuro de Hidrógeno/efectos adversos , Peroxidación de Lípido/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Púrpura/metabolismo , Animales , Encefalopatías Metabólicas Innatas/inducido químicamente , Encefalopatías Metabólicas Innatas/patología , Línea Celular Tumoral , Corteza Cerebral/patología , Sulfuro de Hidrógeno/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Púrpura/inducido químicamente , Púrpura/patología , Ratas , Ratas Wistar
6.
Biosci Rep ; 36(1): e00281, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26589966

RESUMEN

Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in maintaining body energy homoeostasis mainly during catabolic states. Oxidation of fatty acids requires approximately 25 proteins. Inherited defects of FAO have been identified in the majority of these proteins and constitute an important group of inborn errors of metabolism. Affected patients usually present with severe hepatopathy, cardiomyopathy and skeletal myopathy, whereas some patients may suffer acute and/or progressive encephalopathy whose pathogenesis is poorly known. In recent years growing evidence has emerged indicating that energy deficiency/disruption of mitochondrial homoeostasis is involved in the pathophysiology of some fatty acid oxidation defects (FAOD), although the exact underlying mechanisms are not yet established. Characteristic fatty acids and carnitine derivatives are found at high concentrations in these patients and more markedly during episodes of metabolic decompensation that are associated with worsening of clinical symptoms. Therefore, it is conceivable that these compounds may be toxic. We will briefly summarize the current knowledge obtained from patients and genetic mouse models with these disorders indicating that disruption of mitochondrial energy, redox and calcium homoeostasis is involved in the pathophysiology of the tissue damage in the more common FAOD, including medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. We will also provide evidence that the fatty acids and derivatives that accumulate in these diseases disrupt mitochondrial homoeostasis. The elucidation of the toxic mechanisms of these compounds may offer new perspectives for potential novel adjuvant therapeutic strategies in selected disorders of this group.


Asunto(s)
Ácidos Grasos , Trastornos del Metabolismo de los Lípidos , Mitocondrias , Enfermedades Mitocondriales , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Humanos , Trastornos del Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/metabolismo , Hepatopatías/genética , Hepatopatías/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Oxidación-Reducción
7.
Free Radic Biol Med ; 83: 201-13, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25701435

RESUMEN

Patients affected by L-2-hydroxyglutaric aciduria (L-2-HGA) are biochemically characterized by elevated L-2-hydroxyglutaric acid (L-2-HG) concentrations in cerebrospinal fluid, plasma, and urine due to a blockage in the conversion of L-2-HG to α-ketoglutaric acid. Neurological symptoms associated with basal ganglia and cerebelar abnormalities whose pathophysiology is still unknown are typical of this neurometabolic disorder. In the present study we evaluated the early effects (30min after injection) of an acute in vivo intrastriatal and intracerebellar L-2-HG administration on redox homeostasis in rat striatum and cerebellum, respectively. Histological analyses of these brain structures were also carried out 7 days after L-2-HG treatment (long-term effects). L-2-HG significantly decreased the concentrations of reduced (GSH) and total glutathione (tGS), as well as of glutathione peroxidase (GPx) and reductase (GR) activities, but did not change the activities of superoxide dismutase and catalase in striatum. Furthermore, the concentrations of oxidized glutathione (GSSG) and malondialdehyde (MDA), as well as 2',7'-dichlorofluorescein (DCFH) oxidation and hydrogen peroxide (H2O2) production, were increased, whereas carbonyl formation and nitrate plus nitrite concentrations were not altered by L-2-HG injection. It was also found that the melatonin, ascorbic acid plus α-tocopherol, and creatine totally prevented most of these effects, whereas N-acetylcysteine, the noncompetitive glutamate NMDA antagonist MK-801, and the nitric oxide synthase inhibitor L-NAME were not able to normalize the redox alterations elicited by L-2-HG in striatum. L-2-HG intracerebellar injection similarly provoked a decrease of antioxidant defenses (GSH, tGS, GPx, and GR) and an increase of the concentrations of GSSG, MDA, and H2O2 in cerebellum. These results strongly indicate that the major accumulating metabolite in L-2-HGA induce oxidative stress by decreasing the antioxidant defenses and enhancing reactive oxygen species in striatum and cerebellum of adolescent rats. Regarding the histopathological findings, L-2-HG caused intense vacuolation, lymphocyte and macrophage infiltrates, eosinophilic granular bodies, and necrosis in striatum. Immunohistochemistry revealed that L-2-HG treatment provoked an increase of GFAP and a decrease of NeuN immunostaining, indicating reactive astroglyosis and reduction of neuronal population, respectively, in striatum. Similar macrophage infiltrates, associated with less intense vacuolation and lymphocytic infiltration, were observed in cerebellum. However, we did not observe necrosis, eosinophilic granular bodies, and alteration of GFAP and NeuN content in L-2-HG-teated cerebellum. From the biochemical and histological findings, it is presumed that L-2-HG provokes striatal and cerebellar damage in vivo possibly through oxidative stress induction. Therefore, we postulate that antioxidants may serve as adjuvant therapy allied to the current treatment based on a protein-restricted diet and riboflavin and L-carnitine supplementation in patients affected by L-2-HGA.


Asunto(s)
Cerebelo/patología , Cuerpo Estriado/patología , Glutaratos/administración & dosificación , Neostriado/patología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Western Blotting , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Vías de Administración de Medicamentos , Glutaratos/farmacología , Glutatión/metabolismo , Técnicas para Inmunoenzimas , Infusiones Intraventriculares , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Ratas
8.
Biochim Biophys Acta ; 1842(9): 1658-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24946182

RESUMEN

Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca(2+) retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca(2+)-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca(2+) uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca(2+), respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/deficiencia , Cardiomiopatías/metabolismo , Corteza Cerebral/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Ácidos Láuricos/farmacología , Errores Innatos del Metabolismo Lipídico/metabolismo , Mitocondrias/efectos de los fármacos , Miopatías Mitocondriales/metabolismo , Proteína Trifuncional Mitocondrial/metabolismo , Ácidos Mirísticos/farmacología , Enfermedades del Sistema Nervioso/metabolismo , Ácidos Palmíticos/farmacología , Rabdomiólisis/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Cardiomiopatías/patología , Corteza Cerebral/metabolismo , Citocromos c/metabolismo , Homeostasis , Peróxido de Hidrógeno/metabolismo , Errores Innatos del Metabolismo Lipídico/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Miopatías Mitocondriales/patología , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , NADP/metabolismo , Enfermedades del Sistema Nervioso/patología , Oxidantes/metabolismo , Ratas , Ratas Wistar , Rabdomiólisis/patología
9.
Mol Genet Metab ; 108(1): 30-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23218171

RESUMEN

Deficiency of glutaryl-CoA dehydrogenase (GCDH) activity or glutaric aciduria type I (GA I) is an inherited neurometabolic disorder biochemically characterized by predominant accumulation of glutaric acid and 3-hydroxyglutaric acid in the brain and other tissues. Affected patients usually present acute striatum necrosis during encephalopathic crises triggered by metabolic stress situations, as well as chronic leukodystrophy and delayed myelination. Considering that the mechanisms underlying the brain injury in this disease are not yet fully established, in the present study we investigated important parameters of oxidative stress in the brain (cerebral cortex, striatum and hippocampus), liver and heart of 30-day-old GCDH deficient knockout (Gcdh(-/-)) and wild type (WT) mice submitted to a normal lysine (Lys) (0.9% Lys), or high Lys diets (2.8% or 4.7% Lys) for 60 h. It was observed that the dietary supplementation of 2.8% and 4.7% Lys elicited noticeable oxidative stress, as verified by an increase of malondialdehyde concentrations (lipid oxidative damage) and 2-7-dihydrodichlorofluorescein (DCFH) oxidation (free radical production), as well as a decrease of reduced glutathione levels and alteration of various antioxidant enzyme activities (antioxidant defenses) in the cerebral cortex and the striatum, but not in the hippocampus, the liver and the heart of Gcdh(-/-) mice, as compared to WT mice receiving the same diets. Furthermore, alterations of oxidative stress parameters in the cerebral cortex and striatum were more accentuated in symptomatic, as compared to asymptomatic Gcdh(-/-) mice exposed to 4.7% Lys overload. Histopathological studies performed in the cerebral cortex and striatum of these animals exposed to high dietary Lys revealed increased expression of oxidative stress markers despite the absence of significant structural damage. The results indicate that a disruption of redox homeostasis in the cerebral cortex and striatum of young Gcdh(-/-) mice exposed to increased Lys diet may possibly represent an important pathomechanism of brain injury in GA I patients under metabolic stress.


Asunto(s)
Encéfalo/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Homeostasis , Lisina/administración & dosificación , Animales , Suplementos Dietéticos , Glutaril-CoA Deshidrogenasa/genética , Ratones , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
10.
Brain Res ; 1324: 75-84, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20153737

RESUMEN

Patients affected by maple syrup urine disease (MSUD) present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. In the present study we investigated the in vitro effects of leucine (Leu), alpha-ketoisocaproic acid (KIC) and alpha-hydroxyisovaleric acid (HIV), respectively, the branched-chain amino, keto and hydroxy acids that most accumulate in MSUD, on brain bioenergetic homeostasis, evaluating respiratory parameters obtained by oxygen consumption, membrane potential (Psim), NAD(P)H content, swelling and citric acid cycle enzyme activities in mitochondrial preparations from rat forebrain using glutamate plus malate, succinate or alpha-ketoglutarate as respiratory substrates. KIC increased state 4 and decreased the respiratory control ratio with all substrates, in contrast with Leu and HIV. Furthermore, KIC and Leu, but not HIV, decreased state 3 using alpha-ketoglutarate. A KIC-induced selective inhibition of alpha-ketoglutarate dehydrogenase activity was also verified, with no alteration of the other citric acid cycle activities. The ADP/O ratio and the mitochondrial NAD(P)H levels were also reduced by KIC using glutamate/malate and alpha-ketoglutarate. In addition, KIC caused a reduction in the Psim when alpha-ketoglutarate was the substrate. Finally, KIC was not able to induce mitochondrial swelling. The present data indicate that KIC acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor possibly through its inhibitory effect on alpha-ketoglutarate dehydrogenase activity, while Leu acts as a metabolic inhibitor. It is suggested that impairment of mitochondrial homeostasis caused by the major metabolites accumulating in MSUD may be involved in the neuropathology of this disease.


Asunto(s)
Encéfalo/efectos de los fármacos , Fármacos del Sistema Nervioso Central/toxicidad , Cetoácidos/toxicidad , Leucina/toxicidad , Enfermedades Mitocondriales/inducido químicamente , Animales , Encéfalo/fisiopatología , Transporte de Electrón/efectos de los fármacos , Homeostasis/efectos de los fármacos , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Enfermedad de la Orina de Jarabe de Arce , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Enfermedades Mitocondriales/fisiopatología , Dilatación Mitocondrial/efectos de los fármacos , NADP/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Prosencéfalo/fisiopatología , Ratas , Ratas Wistar , Valeratos/toxicidad
11.
Brain Res ; 1262: 81-8, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-19210957

RESUMEN

Isovaleric acidemia (IVAcidemia) is an inborn error of metabolism due to deficiency of isovaleryl-CoA dehydrogenase activity, leading to predominant accumulation of isovaleric acid (IVA). Patients affected by IVAcidemia suffer from acute episodes of encephalopathy, whose underlying mechanisms are poorly known. In the present study we investigated whether an intracerebroventricular injection of IVA could compromise energy metabolism in cerebral cortex of young rats. IVA administration significantly inhibited (14)CO(2) production from acetate (22%) and citrate synthase activity (20%) in cerebral cortex homogenates prepared 24 h after injection. However, no alterations of these parameters were observed 2 h after injection. In contrast, no significant differences were found in the activities of succinate dehydrogenase, isocitrate dehydrogenase, electron transfer chain complexes or creatine kinase in rats sacrificed 2 or 24 h after IVA administration. Moreover, IVA injection significantly inhibited Na(+),K(+)-ATPase activity (25%) in cerebral cortex of rats 2 or 24 h after IVA administration, while pre-treatment of rats with creatine completely prevented the inhibitory effects of IVA on Na(+),K(+)-ATPase. In conclusion, in vivo administration of IVA inhibits the citric acid cycle probably through the enzyme citrate synthase, as well as Na(+),K(+)-ATPase, a crucial enzyme responsible for maintaining the basal potential membrane necessary for a normal neurotransmission. It is presumed that inhibition of these activities may be involved in the pathophysiology of the neurological dysfunction of isovaleric academic patients. The present findings are of particular interest because treatment with creatine supplementation may represent a potential novel adjuvant therapeutic strategy in IVAcidemia.


Asunto(s)
Corteza Cerebral/metabolismo , Creatina/administración & dosificación , Ácidos Pentanoicos/administración & dosificación , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Acetatos/metabolismo , Animales , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono , Corteza Cerebral/efectos de los fármacos , Citrato (si)-Sintasa/antagonistas & inhibidores , Citrato (si)-Sintasa/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Hemiterpenos , Inyecciones Intraventriculares , Isocitrato Deshidrogenasa/metabolismo , Microinyecciones , Consumo de Oxígeno , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Succinato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA