Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomed Res Int ; 2015: 981829, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26273661

RESUMEN

Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Consorcios Microbianos , Microbiología del Agua , Biodegradación Ambiental , Biodiversidad , Egipto , Mar Mediterráneo , Purificación del Agua/métodos
2.
Sci Rep ; 5: 11651, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26119183

RESUMEN

Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.


Asunto(s)
Bacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Contaminación por Petróleo , Petróleo/microbiología , Temperatura , Aerobiosis , Anaerobiosis , Bacterias/genética , Biodegradación Ambiental , Simulación por Computador , Genes Bacterianos , Región Mediterránea , Metaboloma , Metabolómica , Análisis de Componente Principal , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados
3.
Microb Ecol ; 70(3): 724-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25916483

RESUMEN

Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria.


Asunto(s)
Compuestos de Amonio/metabolismo , Bacterias/genética , Consorcios Microbianos/genética , Ácido Úrico/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Jordania , Mar Mediterráneo , Petróleo/metabolismo , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA