Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 32(12): e1907030, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32072703

RESUMEN

Bacterial infections remain a leading threat to global health because of the misuse of antibiotics and the rise in drug-resistant pathogens. Although several strategies such as photothermal therapy and magneto-thermal therapy can suppress bacterial infections, excessive heat often damages host cells and lengthens the healing time. Here, a localized thermal managing strategy, thermal-disrupting interface induced mitigation (TRIM), is reported, to minimize intercellular cohesion loss for accurate antibacterial therapy. The TRIM dressing film is composed of alternative microscale arrangement of heat-responsive hydrogel regions and mechanical support regions, which enables the surface microtopography to have a significant effect on disrupting bacterial colonization upon infrared irradiation. The regulation of the interfacial contact to the attached skin confines the produced heat and minimizes the risk of skin damage during thermoablation. Quantitative mechanobiology studies demonstrate the TRIM dressing film with a critical dimension for surface features plays a critical role in maintaining intercellular cohesion of the epidermis during photothermal therapy. Finally, endowing wound dressing with the TRIM effect via in vivo studies in S. aureus infected mice demonstrates a promising strategy for mitigating the side effects of photothermal therapy against a wide spectrum of bacterial infections, promoting future biointerface design for antibacterial therapy.


Asunto(s)
Antibacterianos/química , Fototerapia , Infecciones Estafilocócicas/terapia , Resinas Acrílicas/química , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vendajes , Oro/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/efectos de la radiación , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/efectos de la radiación , Hidrogeles/química , Rayos Infrarrojos/uso terapéutico , Nanopartículas del Metal/química , Ratones , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/veterinaria
2.
Nanoscale ; 8(36): 16486-98, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27605059

RESUMEN

We present a bioinspired design strategy to engineer bacteria-targeting and membrane-disruptive nanoparticles for the effective antibiotic therapy of Helicobacter pylori (H. pylori) infection. Antibacterial nanoparticles were self-assembled from highly exfoliated montmorillonite (eMMT) and cationic linear polyethyleneimine (lPEI) via electrostatic interactions. eMMT functions as a bioinspired 'sticky' building block for anchoring antibacterial nanoparticles onto the bacterial cell surface via bacteria-secreted extracellular polymeric substances (EPS), whereas membrane-disruptive lPEI is able to efficiently lyse the bacterial outer membrane to allow topical transmembrane delivery of antibiotics into the intracellular cytoplasm. As a result, eMMT-lPEI nanoparticles intercalated with the antibiotic metronidazole (MTZ) not only efficiently target bacteria via EPS-mediated adhesion and kill bacteria in vitro, but also can effectively remain in the stomach where H. pylori reside, thereby serving as an efficient drug carrier for the direct on-site release of MTZ into the bacterial cytoplasm. Importantly, MTZ-intercalated eMMT-lPEI nanoparticles were able to efficiently eradicate H. pylori in vivo and to significantly improve H. pylori-associated gastric ulcers and the inflammatory response in a mouse model, and also showed superior therapeutic efficacy as compared to standard triple therapy. Our findings reveal that bacterial adhesion plays a critical role in promoting efficient antimicrobial delivery and also represent an original bioinspired targeting strategy via specific EPS-mediated adsorption. The bacteria-adhesive eMMT-lPEI nanoparticles with membrane-disruptive ability may constitute a promising drug carrier system for the efficacious targeted delivery of antibiotics in the treatment of bacterial infections.


Asunto(s)
Silicatos de Aluminio/farmacología , Antibacterianos/farmacología , Helicobacter pylori/efectos de los fármacos , Nanopartículas , Adhesivos , Animales , Adhesión Bacteriana/efectos de los fármacos , Bentonita , Arcilla , Portadores de Fármacos , Femenino , Células HEK293 , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Ratones Endogámicos BALB C , Polietileneimina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA