Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 117(2): 353-374, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855265

RESUMEN

Streptococcus sanguinis is an important cause of infective endocarditis. In strain SK36, the ABC-family manganese transporter, SsaACB, is essential for virulence. We have now identified a ZIP-family protein, TmpA, as a secondary manganese transporter. A tmpA mutant had no phenotype, but a ΔssaACB ΔtmpA mutant was more attenuated for serum growth and for virulence in a rabbit model than its ΔssaACB parent. The growth of both mutants was restored by supplemental manganese, but the ΔssaACB ΔtmpA mutant required twenty-fold more and accumulated less. Although ZIP-family proteins are known for zinc and iron transport, TmpA-mediated transport of either metal was minimal. While ssaACB appears ubiquitous in St. sanguinis, tmpA was present in a majority of strains and a mntH gene encoding an NRAMP-family transporter was identified in relatively few, including VMC66. As in SK36, deletion of ssaACB greatly diminished VMC66 endocarditis virulence and serum growth, and deletion of tmpA from this mutant diminished virulence further. Virulence was not significantly altered by deletion of mntH from either VMC66 or its ΔssaACB mutant. This and the accompanying paper together suggest that SsaACB is of primary importance for endocarditis virulence while secondary transporters TmpA and MntH contribute to growth under differing conditions.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Manganeso/metabolismo , Conejos , Streptococcus sanguis/metabolismo , Virulencia
2.
ACS Infect Dis ; 6(7): 1906-1921, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32329608

RESUMEN

Streptococcus sanguinis is an oral commensal bacterium, but it can colonize pre-existing heart valve vegetations if introduced into the bloodstream, leading to infective endocarditis. Loss of Mn- or Fe-cofactored virulence determinants are thought to result in weakening of this bacterium. Indeed, intracellular Mn accumulation mediated by the lipoprotein SsaB, a component of the SsaACB transporter complex, has been shown to promote virulence for endocarditis and O2 tolerance. To delineate intracellular metal-ion abundance and redox speciation within S. sanguinis, we developed a protocol exploiting two spectroscopic techniques, Inductively coupled plasma-optical emission spectrometry (ICP-OES) and electron paramagnetic resonance (EPR) spectroscopy, to respectively quantify total intracellular metal concentrations and directly measure redox speciation of Fe and Mn within intact whole-cell samples. Addition of the cell-permeable siderophore deferoxamine shifts the oxidation states of accessible Fe and Mn from reduced-to-oxidized, as verified by magnetic moment calculations, aiding in the characterization of intracellular metal pools and metal sequestration levels for Mn2+ and Fe. We have applied this methodology to S. sanguinis and an SsaACB knockout strain (ΔssaACB), indicating that SsaACB mediates both Mn and Fe uptake, directly influencing the metal-ion pools available for biological inorganic pathways. Mn supplementation of ΔssaACB returns total intracellular Mn to wild-type levels, but it does not restore wild-type redox speciation or distribution of metal cofactor availability for either Mn or Fe. Our results highlight the biochemical basis for S. sanguinis oxidative resistance, revealing a dynamic role for SsaACB in controlling redox homeostasis by managing the intracellular Fe/Mn composition and distribution.


Asunto(s)
Streptococcus sanguis , Factores de Virulencia , Hierro , Oxidación-Reducción , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Virulencia , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA