Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neural Eng ; 21(2)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38565100

RESUMEN

Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.Approach. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.Main results. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.Significance. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje , Electroencefalografía , Imágenes en Psicoterapia , Redes Neurales de la Computación , Algoritmos
2.
J Sci Food Agric ; 102(14): 6603-6611, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35596659

RESUMEN

BACKGROUND: Under the intensive modern poultry farming system, the lung of duck is one of the main target organs for various bacterial and viral infections. Curcumin is a kind of natural polyphenol compound for which various beneficial biological functions exist, including being an anti-inflammatory, antioxidant, and antiviral. The aim of this work was to investigate the mechanism of curcumin-alleviated lipopolysaccharide (LPS)-induced lung damage by the nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant reaction element (ARE) and nuclear factor kappa B (NF-κB) signaling pathway in ducks. RESULTS: In total, 450 one-day-old male specific pathogen-free ducks were randomly assigned into three dietary treatments: CON, basal diet; LPS, basal diet + LPS treatment; LPS + CUR, basal diet + LPS + 500 mg kg-1 of curcumin. At the end of the experiment (21 days), ducks in LPS treatment were challenged with 5 mg LPS per kilogram of body weight and the other two treatments were injected with the same dose of phosphate-buffered saline solution. The results showed that LPS caused acute inflammation, oxidation stress, and lung injury. Dietary addition of curcumin significantly relieved the oxidation stress and inflammation parameters. Moreover, the results showed that remission may be through the signaling pathways of both Nrf2-ARE and NF-κB. CONCLUSION: In conclusion, dietary supplementation of 500 mg kg-1 of curcumin exhibited a lung-protective effect in ducks. This experiment broadens the mode of metabolism actions of curcumin in the target organs and provides an insight for the application of curcumin in waterfowl feed. © 2022 Society of Chemical Industry.


Asunto(s)
Curcumina , Lesión Pulmonar , Animales , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antivirales/farmacología , Curcumina/uso terapéutico , Patos , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fosfatos/farmacología , Polifenoles/farmacología , Solución Salina , Transducción de Señal
3.
Biol Trace Elem Res ; 171(1): 201-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26400650

RESUMEN

The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.


Asunto(s)
Mediadores de Inflamación/metabolismo , Riñón/metabolismo , ARN Mensajero/genética , Selenio/deficiencia , Selenio/metabolismo , Selenoproteínas/genética , Animales , Pollos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Selenoproteínas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
Plant Cell Physiol ; 56(2): 322-33, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25395473

RESUMEN

In Arabidopsis, six acyl-CoA-binding proteins (ACBPs) have been identified and they have been demonstrated to function in plant stress responses and development. Three of these AtACBPs (AtACBP4-AtACBP6) are cytosolic proteins and all are expressed in floral organs as well as in other tissues. The roles of cytosolic AtACBPs in floral development were addressed in this study. To this end, a T-DNA insertional knockout mutant of acbp5 was characterized before use in crosses with the already available acbp4 and acbp6 T-DNA knockout mutants to examine their independent and combinatory functions in floral development. The single-gene knockout mutations did not cause any significant phenotypic changes, while phenotypic deficiencies affecting siliques and pollen were observed in the double mutants (acbp4acbp6 and acbp5acbp6) and the acbp4acbp5acbp6 triple mutant. Vacuole accumulation in the acbp4acbp6, acbp5acbp6 and acbp4acbp5acbp6 pollen was the most severe abnormality occurring in the double and triple mutants. Furthermore, scanning electron microscopy and transmission electron microscopy revealed exine and oil body defects in the acbp4acbp5acbp6 mutant, which also displayed reduced ability in in vitro pollen germination. Transgenic Arabidopsis expressing ß-glucuronidase (GUS) driven from the various AtACBP promoters indicated that AtACBP6pro::GUS expression overlapped with AtACBP4pro::GUS expression in pollen grains and with AtACBP5pro::GUS expression in the microspores and tapetal cells. Taken together, these results suggest that the three cytosolic AtACBPs play combinatory roles in acyl-lipid metabolism during pollen development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citosol/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Inhibidor de la Unión a Diazepam/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Mutación/genética , Fenotipo , Aceites de Plantas/metabolismo , Polen/anatomía & histología , Polen/genética , Reproducción/genética
5.
Biol Trace Elem Res ; 157(3): 234-41, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24488809

RESUMEN

Previous studies have determined the effects of dietary selenium (Se) supplementation on selenoprotein N (SelN, SEPN1), selenophosphate synthetase-1 (SPS1), and selenocysteine-synthase (SecS) mRNA abundance in chicken skeletal and cardiac muscles. To investigate collective responses of these genes to dietary Se concentrations ranging from deficiency to moderately high level in muscle tissues of chicken, 1-day-old chickens were exposed to a diet of deficient Se and supplemented with Se (0.15 mg Se/kg and 1.50 mg Se/kg) as sodium selenite in the feed for 35 days. Muscle tissues (flight, breast, leg, and cardiac muscles) were collected and examined for Se content and mRNA levels of SelN on days 1, 15, 25, and 35 days, respectively. Moreover, SPS1 and SecS mRNA levels were analyzed. The results showed that the expression of SelN gene in cardiac muscle responded to dietary Se concentrations. SelN gene was downregulated in the Se deficiency group (L group), and upregulated in the Se excess group (H group) compared with the moderate Se group (M group) (P < 0.05) in cardiac muscle. Se deficiency mainly unregulated SelN mRNA level in skeletal muscles compared with M group. Excess dietary Se mainly resulted in the upregulation of SelN mRNA level in skeletal muscles compared with the M group. SecS mRNA levels responded to dietary Se concentrations showed a similar change compared with SelN in cardiac muscle. SPS1 mRNA levels responded to dietary Se concentrations showed a downregulation in L group and upregulation in H group. However, SelN mRNA levels displayed a different expression pattern in different skeletal and cardiac muscles. Moreover, Se also regulated the levels of SPS1 and SecS mRNAs. In summary, Se regulated the expression of SelN gene and affected the mRNA levels of SecS and SPS1. The level of Se in the feed may regulate SelN biosynthesis by affecting the levels of SPS1 and SecS mRNA.


Asunto(s)
Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Selenio/deficiencia , Selenio/farmacología , Selenoproteínas/genética , Animales , Pollos , Femenino , ARN Mensajero/genética , Selenio/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA