Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Cardiovasc Thorac Res ; 15(2): 106-115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37654818

RESUMEN

Introduction: Inflammation and oxidative stress are contributed to cardiovascular diseases. Vitamin D (Vit D) has antioxidant and anti-inflammatory properties. In the current research, the effect of Vit D on cardiac fibrosis and inflammation, and oxidative stress indicators in cardiovascular tissues was studied in lipopolysaccharides(LPS) injected rats. Methods: Rats were distributed into 5 groups and were treated for 2 weeks. Control: received vehicle(saline supplemented with tween-80) instead of Vit D and saline instead of LPS, LPS: treated by 1 mg/kg of LPS and was given vehicle instead of Vit D, LPS-Vit D groups: received 3 doses of Vit D (100, 1000, and 10000 IU/kg) of Vit D in addition to LPS. Vit D was dissolved in saline supplemented with tween-80 (final concentration 0.1%) and LPS was dissolved in saline. The white blood cell (WBC) was counted. Oxidative stress markers were determined in serum, aorta, and heart. Cardiac tissue fibrosis was also estimated using Masson's trichrome staining method. Results: WBC and malondialdehyde (MDA) were higher in the LPS group than the control group, whereas the thiol content, superoxide dismutase (SOD), and catalase (CAT) were lower in the LPS group than the control group (P<0.01 and P<0.001). Administration of Vit D decreased WBC (P<0.001) and MDA (P<0.05 and P<0.001) while enhanced thiol (dose 10000 IU/Kg) (P<0.001), SOD (dose 10000 IU/kg) (P<0.001), and CAT (P<0.05 and P<0.001) compared to the LPS group. All doses of Vit D also decreased cardiac fibrosis compared to the LPS group (P<0.001). Conclusion: Vit D protected the cardiovascular against the detrimental effect of LPS. This cardiovascular protection can be attributed to the antioxidant and anti-inflammatory properties of Vit D.

2.
Physiol Rep ; 11(15): e15785, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37537722

RESUMEN

Application of herbal medicines in the treatment of diseases is in the center of attention of medical scientific societies. Saffron (Cricus sativus L.) is a medicinal plant belonging to the Iridaceae family with different therapeutic properties. The outcomes of human and animal experiments indicate that therapeutic impacts of saffron and its constituents, crocin, crocetin, and safranal, mainly are mediated via inhibiting the inflammatory reactions and scavenging free radicals. It has been suggested that saffron and crocin extracted from it also up-regulate the expression of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2), down-regulate nuclear factor kappa B (NF-κB) signaling pathway and untimely improve the body organs dysfunction. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 (COX2) also is attributed to crocin. The current review narrates the therapeutic effects of saffron and its constituents on various body systems through looking for the scientific databases including Web of Science, PubMed, Scopus, and Google Scholar from the beginning of 2010 until the end of 2022.


Asunto(s)
Crocus , Animales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Colorantes
3.
Animal Model Exp Med ; 6(3): 221-229, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272426

RESUMEN

BACKGROUND: Zataria multiflora and carvacrol showed various pharmacological properties including anti-inflammatory and anti-oxidant effects. However, up to now no studies have explored its potential benefits in ameliorating sepsis-induced aortic and cardiac injury. Thus, this study aimed to investigate the effects of Z. multiflora and carvacrol on nitric oxide (NO) and oxidative stress indicators in lipopolysaccharide (LPS)-induced aortic and cardiac injury. METHODS: Adult male Wistar rats were assigned to: Control, lipopolysaccharide (LPS) (1 mg/kg, intraperitoneal (i.p.)), and Z. multiflora hydro-ethanolic extract (ZME, 50-200 mg/kg, oral)- and carvacrol (25-100 mg/kg, oral)-treated groups. LPS was injected daily for 14 days. Treatment with ZME and carvacrol started 3 days before LPS administration and treatment continued during LPS administration. At the end of the study, the levels of malondialdehyde (MDA), NO, thiols, and antioxidant enzymes were evaluated. RESULTS: Our findings showed a significant reduction in the levels of superoxide dismutase (SOD), catalase (CAT), and thiols in the LPS group, which were restored by ZME and carvacrol. Furthermore, ZME and carvacrol decreased MDA and NO in cardiac and aortic tissues of LPS-injected rats. CONCLUSIONS: The results suggest protective effects of ZME and carvacrol on LPS-induced cardiovascular injury via improved redox hemostasis and attenuated NO production. However, additional studies are needed to elucidate the effects of ZME and its constituents on inflammatory responses mediated by LPS.


Asunto(s)
Óxido Nítrico , Sepsis , Ratas , Masculino , Animales , Óxido Nítrico/farmacología , Lipopolisacáridos/toxicidad , Cardiotoxicidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas Wistar , Estrés Oxidativo/fisiología , Antioxidantes/farmacología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Compuestos de Sulfhidrilo/farmacología
4.
Physiol Rep ; 11(9): e15682, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37144592

RESUMEN

Hypothyroidism can induce oxidative stress. Nano-selenium (Nano Sel) has antioxidant effects. The current research explored Nano Sel effects on hepatic and renal oxidative damage induced by hypothyroidism in rats. Animals were grouped into (1) Control; (2) Propylthiouracil (PTU) group which received water mixed with 0.05% of PTU; (3) PTU-Nano Sel 50; (4) PTU-Nano Sel 100; and (5) PTU-Nano Sel 150. Besides PTU, the PTU-Nano Sel groups were treated with 50, 100, or 150 µg/kg of Nano Sel intraperitoneally. Treatments were done for 6 weeks. The serum level of T4, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), albumin, total protein, creatinine, and blood urea nitrogen (BUN) was evaluated. Malondialdehyde (MDA) and total thiol concentration and the activity of catalase (CAT) and superoxide dismutase (SOD) in hepatic and renal tissues also were checked. Hypothyroidism induced by PTU significantly increased AST, ALT, ALP, creatinine, BUN, and MDA concentration and noticeably reduced albumin, total protein, total thiol level, and SOD and CAT activity. Administration of Nano Sel ameliorated the adverse effects of hypothyroidism on liver and kidney function. Nano Sel applied protective effects against hepatic and renal damage resulting from hypothyroidism via ameliorating the oxidative stress status. More cellular and molecular experiments need to be done to understand the exact mechanisms.


Asunto(s)
Hipotiroidismo , Selenio , Ratas , Animales , Selenio/farmacología , Selenio/uso terapéutico , Creatinina , Ratas Wistar , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Hipotiroidismo/tratamiento farmacológico , Hígado/metabolismo , Riñón/metabolismo , Superóxido Dismutasa/metabolismo , Compuestos de Sulfhidrilo
5.
Avicenna J Phytomed ; 12(3): 325-336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186934

RESUMEN

Objective: Hypericum perforatum is a herbal medicine used in traditional medicine for the treatment of depression due to its antidepressant and anti-inflammatory activities. Therefore, we evaluated the therapeutic efficacy of H. perforatum extract (HPE) in combination with gold nanoparticles (HPE-GNP) against experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Materials and Methods: EAE was induced in C57BL/6 mice with subcutaneous injection of MOG35-55 emulsified in complete Freund's adjuvant, and intraperitoneal pertussis toxin. Mice were treated with drugs in free (HPE) and nano-form (HPE-GNP) preparations. Splenocytes were isolated from all mice and the level of inflammatory and anti-inflammatory cytokines were evaluated by ELISA. The expression of T cells' transcription factors was also assessed using Real-Time PCR. Results: Clinical score was reduced after HPE-GNP treatment. This change was associated with a decrease in the incidence and infiltration of inflammatory cells into the central nervous system. Additionally, treatment with HPE-GNP decreased the level of pro-inflammatory cytokines (IFN-γ, IL-17A and IL-6) and increased anti-inflammatory cytokines (TGF-ß, IL-10 and IL-4). The real-time analysis revealed a decrease in the level of T-bet and ROR-γt but an increase in FoxP3 and GATA3 expression. Conclusion: The current study demonstrated that HPE-GNP could potentially reduce clinical and pathological complications of EAE, but laboratory data showed that HPE-GNP was significantly more effective than HPE in the treatment of EAE.

6.
Clin Exp Hypertens ; 44(3): 268-279, 2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35142246

RESUMEN

BACKGROUND: Nano selenium (Nano Sel) has many therapeutic properties including antioxidant, anticancer, and anti-inflammatory actions. OBJECTIVE: Impacts of Nano Sel administration against cardiac fibrosis and heart and aorta tissue oxidative damage observed in hypothyroid rats were explored. METHODS: The animals were randomly grouped and treated as: 1) Control; 2) Propylthiouracil (PTU) in which PTU was added to the drinking water (0.05%) to induce hypothyroidism; 3-5) PTU-Nano Sel 50, PTU-Nano Sel 100, and PTU-Nano Sel 150 groups, which received daily PTU plus 50,100 or 150 µg/kg of Nano Sel for 6 weeks intraperitoneally. The heart and aorta tissues were removed under deep anesthesia and then biochemical parameters including malondialdehyde (MDA), total thiol groups, catalase (CAT), and superoxide dismutase (SOD), as well as cardiac fibrosis were assessed. RESULTS: Hypothyroidism induced by PTU was remarkably associated with myocardial hypertrophy and perivascular fibrosis in Masson's trichrome staining. Moreover, hypothyroidism increased MDA level, while it subtracted total thiol group content and activity of SOD and CAT. Treatment with Nano Sel recovered hypothyroidism-induced cardiac fibrosis in the histological assessment. Nano Sel also promoted CAT and SOD activity and thiol content, whereas alleviated MDA levels in the heart and aorta tissues. CONCLUSION: Results propose that administration of Nano Sel exerts a protective role in the cardio vascular system via preventing cardiac fibrosis and inhibiting oxidative stress.


Asunto(s)
Hipotiroidismo , Selenio , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fibrosis , Hipotiroidismo/inducido químicamente , Hipotiroidismo/complicaciones , Hipotiroidismo/tratamiento farmacológico , Estrés Oxidativo , Ratas , Ratas Wistar , Selenio/efectos adversos
7.
Front Pharmacol ; 12: 762182, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867384

RESUMEN

Objective: Metabolic disorders (MD) can disturb intracellular metabolic processes. A metabolic disorder can be resulted from enzyme deficits or disturbances in function of various organs including the liver, kidneys, pancreas, cardiovascular system, and endocrine system. Some herbs were used traditionally for spices, food additives, dietary, and medicinal purposes. Medicinal plants possess biological active compounds that enhance human health. We aimed to provide evidence about therapeutic effects of some medicinal herbs on MD. Data Sources: PubMed, Scopus, and Google Scholar were explored for publications linked to MD until February 2021. The most literature reports that were published in the last 10 years were used. All types of studies such as animal studies, clinical trials, and in vitro studies were included. The keywords included "Metabolic disorders," "Nigella sativa L.," "Thymoquinone," "White tea"OR "Camellia sinensis L." "catechin," and "Allium sativum L." OR "garlic" were searched. Results: Based on the results of scientific studies, the considered medicinal plants and their active components in this review have been able to exert the beneficial therapeutic effects on obesity, diabetes mellitus and non-alcoholic fatty liver disease. Conclusions: These effects are obvious by inhibition of lipid peroxidation, suppression of inflammatory reactions, adjustment of lipid profile, reduction of adipogenesis and regulation of blood glucose level.

8.
Adv Pharm Bull ; 11(2): 224-232, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33880344

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder which is characterized by typical symptoms including gradual progressive muscle rigidity, tremor and loss of motor skills. Although there is no definitive cure for PD, the extract of some medicinal plants and their ingredients have been suggested to relieve its symptoms and to prevent disability in patients. This review is focused on therapeutic effects of some medicinal plants and their ingredients on PD. The findings presented in this review were collected from experimental and clinical studies in databases including PubMed, Web of Science and Google Scholar until the end of May 2019. The keywords "neurotoxicity " or "Parkinson's disease" or "neuroprotective" and "Medicinal plants" and "Flavonoids" were searched. Based on the results of animal and clinical studies, the extract of medicinal plants and their components which are discussed in this review have neuro-protective effects against PD. These protective properties mainly are mediated through inhibition of dopamine metabolizing enzymes, reduction oxidant markers, increase of antioxidant agents and suppression of neuro-inflammation.

9.
J Pharmacopuncture ; 22(3): 122-130, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31673441

RESUMEN

OBJECTIVES: The medicinal plants are believed to enhance the natural resistance of the body to infections. Some of the main constituents of the plant and derived materials such as, proteins, lectins and polysaccharides have anti-inflammatory effects. Portulaca oleracea (P. oleracea) were used traditionally for dietary, food additive, spice and various medicinal purposes. This review article is focus on the anti-asthmatic effects of P. oleracea and its constituents. METHODS: Various databases, such as the PubMed, Scopus, and Google Scholar, were searched the keywords including "Portulaca oleracea", "Quercetin", "Anti-inflammatory", "Antioxidant", "Cytokines", "Smooth muscle ", and " Relaxant effects " until the end of Jul 2018. RESULTS: P. oleracea extracts and its constituents increased IFN-γ, IL-2, IFNγ/IL-4 and IL- 10/IL-4 ratio, but decreased secretion of TNF-α, IL-4 and chemokines in both in vitro and in vivo studies. P. oleracea extracts and quercetin also significantly decreased production of NO, stimulated ß-adrenoceptor and/or blocking muscarinic receptors in tracheal smooth muscles. Conclusion: P. oleracea extracts and quercetin showed relatively potent anti-asthmatic effects due to decreased production of NO, inflammatory cytokines and chemokines, reduced oxidant while enhanced antioxidant markers, and also showed potent relaxant effects on tracheal smooth muscles via stimulatory on ß-adrenoceptor or/and blocking muscarinic receptors.

10.
J Pharmacopuncture ; 22(2): 95-101, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31338249

RESUMEN

OBJECTIVES: Angiotensin II (AngII), a major product of renin-angiotensin system (RAS) has important role in induction of hypertension and antihypertensive effect of several medicinal plant was mediated by effect on this agent. Therefore, this study examined the possible effect of hydroalcoholic extract of Crocus sativus (C. sativus) on hypertension induced by AngII. METHODS: Six groups (n = 6) of rats were used as follow: 1) Control, 2) AngII (300 ng/kg), 3) Losartan (Los, 10 mg/kg) + AngII and 4-6) C. sativus extract (10, 20 & 40 mg/kg,) + AngII. The femoral artery and vein were cannulated for recording cardiovascular parameters and drugs administration, respectively. All drugs were injected intravenously (i.v). Los and all doses of C. sativus injected 10 min before AngII. Systolic blood pressure (SBP), mean arterial blood pressure (MAP) and heart rate (HR) were recorded throughout the experiment and those peak changes (Δ) were calculated and compared to control and AngII. RESULTS: AngII significantly increased ΔMAP, ΔSBP and ΔHR than control (P < 0. 01 to P < 0.001) and these increments were significantly attenuated by Los. All doses of C. sativus significantly reduced peak ΔMAP, ΔSBP, and ΔHR than AngII group (P < 0. 05 to P < 0.001). In addition, peak ΔMAP, ΔSBP in doses 10 and 20 were significant than Los + AngII group (P < 0.05 to P< 0.01) but in dose 40 only MAP was significant (P < 0.05). Peak ΔHR in all doses of C sativus was not significant than Los+ AngII. CONCLUSION: Regarding the improving effect of the C. sativus extract on AngII induced hypertension, it seems that this ameliorating effect partly mediated through inhibition of RAS.

11.
J Tradit Complement Med ; 9(2): 98-105, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30963044

RESUMEN

In recent years, growing attention has been given to traditional medicine. In traditional medicine a large number of plants have been used to cure neurodegenerative diseases such as Alzheimer's disease (AD) and other memory related disorders. Crocus sativus (C. sativus), Nigella sativa (N. sativa), Coriandrum sativum (C. sativum), Ferula assafoetida (F. assafoetida), Thymus vulgaris (T. vulgaris), Zataria multiflora (Z. multiflora) and Curcuma longa (C. longa) were used traditionally for dietary, food additive, spice and various medicinal purposes. The Major components of these herbs are carotenoids, monoterpenes and poly phenol compounds which enhanced the neural functions. These medicinal plants increased anti-oxidant, decreased oxidant levels and inhibited acetylcholinesterase activity in the neural system. Furthermore, neuroprotective of plants occur via reduced pro-inflammatory cytokines such as IL-6, IL-1ß, TNF-α and total nitrite generation. Therefore, the effects of the above mentioned medicinal and their active constituents improved neurodegenerative diseases which indicate their therapeutic potential in disorders associated with neuro-inflammation and neurotransmitter deficiency such as AD and depression.

12.
Drug Chem Toxicol ; 42(3): 270-279, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29589766

RESUMEN

In this study, the effects of Nigella Sativa (NS) hydro-alcoholic extract on lipopolysaccharide (LPS)-induced learning and memory impairments, hippocampal cytokine levels, and brain tissues oxidative damage were investigated in rats. The rats were grouped and treated: (1) control (saline), (2) LPS (1 mg/kg i.p.), and (3-5) 100, 200, or 400 mg/kg NS hydro-alcoholic extract 30 min before LPS injection. The treatment was started since 6 days before the behavioral experiments and continued during the behavioral tests (LPS injection 2 h before each behavioral experiment). Finally, the brains were removed for biochemical assessments. In Morris water maze (MWM) test, LPS increased the escape latency and traveled path compared to control group, whereas all doses of NS hydro-alcoholic extract decreased them compared to LPS group. In passive avoidance (PA) test, the latency to enter the dark compartment in LPS group was shorter than control group while in all treated groups it was longer than LPS group. LPS increased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and nitric oxide (NO) metabolites, and decreased thiol content, superoxide dismutase (SOD), and catalase (CAT) in the hippocampal tissues compared to control group while NS hydro-alcoholic extract decreased MDA and NO metabolites and increased thiol content, SOD, and CAT compared to LPS group. Findings of the current study indicated that the hydro-alcoholic extract of NS improved the LPS-induced learning and memory impairments induced by LPS in rats by improving hippocampal cytokine levels and brain tissues oxidative damage.


Asunto(s)
Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Nigella sativa/química , Extractos Vegetales/uso terapéutico , Animales , Hipocampo/fisiopatología , Lipopolisacáridos/toxicidad , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Extractos Vegetales/aislamiento & purificación , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
13.
Saudi J Kidney Dis Transpl ; 28(6): 1270-1281, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29265038

RESUMEN

Extracts of both Curcuma longa (CL) and Nigella sativa extract (NS) are reported to have protective effects on renal damage. In this study, we investigated the protective effect of a combination of NS and CL on Adriamycin (ADR)-induced renal damage. Forty eight rats were divided into six groups as: Control (CO), ADR, Vitamin C + ADR, CL + ADR, NS +ADR, and CL + NS + ADR. ADR was injected intravenously on the 7th day of the study. 24-hour urine and orbital blood samples were collected on day 0, 48 hr after ADR injection and at the end of weeks 2, 3, 4, and on the 35th day. Glomerular filtration rate (GFR) was calculated on each sample, and on the 35th day, renal index and histological changes were also evaluated. In the ADR-treated rats, significant renal pathological changes were demonstrated compared to CO group. The renal index and urine protein excretion significantly increased, and serum albumin and GFR in the ADR-treated rats were significantly decreased compared to CO group. In NS + ADR group, the serum albumin significantly decreased compared to ADR group. In CL + NS + ADR group, the urine protein excretion was lower than ADR group, and serum albumin concentration was significantly higher than ADR group. In addition, in CL + ADR and NS + ADR groups also, the urine protein was significantly lower compared to ADR group. This study shows that the mixed extracts of N. sativa and CL have positive synergistic effects on renal damage in nephropathy induced by ADR in rats.


Asunto(s)
Alcoholes/química , Doxorrubicina , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Nigella sativa/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Solventes/química , Animales , Biomarcadores/sangre , Biomarcadores/orina , Curcuma , Citoprotección , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sinergismo Farmacológico , Tasa de Filtración Glomerular/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Extractos Vegetales/aislamiento & purificación , Sustancias Protectoras/aislamiento & purificación , Proteinuria/inducido químicamente , Proteinuria/prevención & control , Ratas Wistar , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA