Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Nutr ; 112(8): 1274-85, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25196630

RESUMEN

During the last few decades, plant protein ingredients such as soya proteins have replaced fishmeal in the diets of aquacultured species. This may affect the requirement and metabolism of methionine as soya contains less methionine compared with fishmeal. To assess whether methionine limitation affects decarboxylated S-adenosylmethionine availability and polyamine status, in the present study, juvenile Atlantic salmon were fed a methionine-deficient plant protein-based diet or the same diet supplemented with dl-methionine for 8 weeks. The test diets were compared with a fishmeal-based control diet to assess their effects on the growth performance of fish. Methionine limitation reduced growth and protein accretion, but when fish were fed the dl-methionine-supplemented diet their growth and protein accretion equalled those of fish fed the fishmeal-based control diet. Methionine limitation reduced free methionine concentrations in the plasma and muscle, while those in the liver were not affected. S-adenosylmethionine (SAM) concentrations were higher in the liver of fish fed the methionine-deficient diet, while S-adenosylhomocysteine concentrations were not affected. Putrescine concentrations were higher and spermine concentrations were lower in the liver of fish fed the methionine-deficient diet, while the gene expression of SAM decarboxylase (SAMdc) and the rate-limiting enzyme of polyamine synthesis ornithine decarboxylase (ODC) was not affected. Polyamine turnover, as assessed by spermine/spermidine acetyltransferase (SSAT) abundance, activity and gene expression, was not affected by treatment. However, the gene expression of the cytokine TNF-α increased in fish fed the methionine-deficient diet, indicative of stressful conditions in the liver. Even though taurine concentrations in the liver were not affected by treatment, methionine and taurine concentrations in muscle decreased due to methionine deficiency. Concomitantly, liver phospholipid and cholesterol concentrations were reduced, while NEFA concentrations were elevated. In conclusion, methionine deficiency did not increase polyamine turnover through depletion of hepatic SAM, as assessed by SSAT activity and abundance.


Asunto(s)
Enfermedades Carenciales/veterinaria , Dieta/veterinaria , Hígado/metabolismo , Metionina/deficiencia , Poliaminas/metabolismo , S-Adenosilmetionina/metabolismo , Salmo salar/crecimiento & desarrollo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Animales , Acuicultura , Enfermedades Carenciales/metabolismo , Enfermedades Carenciales/prevención & control , Dieta/efectos adversos , Ingestión de Energía , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Metabolismo de los Lípidos , Hígado/crecimiento & desarrollo , Hígado/patología , Metionina/metabolismo , Metionina/uso terapéutico , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Noruega , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Proteínas de Plantas/efectos adversos , Putrescina/metabolismo , Salmo salar/metabolismo , Espermina/metabolismo , Aumento de Peso
2.
Amino Acids ; 46(5): 1225-33, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24500114

RESUMEN

Arginine has been demonstrated to enhance glucose and lipid oxidation in mammals through activation of polyamine turnover. We aimed to investigate how arginine affects energy utilization through polyamine metabolism and whether this effect is time dependent. Primary liver cells were isolated from Atlantic salmon (2.2 kg body weight) fed diets containing 25.5 (low arginine, LA) or 36.1 (high arginine, HA) g arginine/kg dry matter for 12 weeks, to investigate the effect of long-term arginine supplementation. The cells were cultured for 24 h in L-15 medium to which either alpha-difluoromethylornithine (DFMO) or N (1),N (11)-diethylnorspermine (DENSPM) was added. Analysis of the medium by nuclear magnetic resonance revealed significant differences between the two dietary groups as well as between cells exposed to DFMO and DENSPM, with decreased glucose, fumarate and lactate concentrations in media of the HA cells. Liver cells from fish fed the HA diet had higher spermidine/spermine-N1-acetyltransferase protein abundance and lower adenosine triphosphate concentration as compared to the LA-fed fish, while gene expression was not affected by either diet or treatment. Primary liver cells isolated from salmon fed a commercial diet and cultured in L-15 media with or without arginine supplementation (1.82 or 3.63 mM) for 48 h, representing short-term effect of arginine supplementation, showed differential expression of genes for apoptosis and polyamine synthesis due to arginine supplementation or inhibition by DFMO. Overall, arginine concentration and exposure time affected energy metabolism and gene regulation more than inhibition or activation of key enzymes of polyamine metabolism, suggesting a polyamine-independent influence of arginine on cellular energy metabolism and survival.


Asunto(s)
Alimentación Animal/análisis , Glucosa/metabolismo , Hígado/metabolismo , Poliaminas/metabolismo , Salmo salar/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Metabolismo Energético , Hepatocitos/metabolismo , Hígado/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA