Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 60(10): 6302-12, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27503651

RESUMEN

The plant defensin NaD1 is a potent antifungal molecule that also targets tumor cells with a high efficiency. We examined the features of NaD1 that contribute to these two activities by producing a series of chimeras with NaD2, a defensin that has relatively poor activity against fungi and no activity against tumor cells. All plant defensins have a common tertiary structure known as a cysteine-stabilized α-ß motif which consists of an α helix and a triple-stranded ß-sheet stabilized by four disulfide bonds. The chimeras were produced by replacing loops 1 to 7, the sequences between each of the conserved cysteine residues on NaD1, with the corresponding loops from NaD2. The loop 5 swap replaced the sequence motif (SKILRR) that mediates tight binding with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is essential for the potent cytotoxic effect of NaD1 on tumor cells. Consistent with previous reports, there was a strong correlation between PI(4,5)P2 binding and the tumor cell killing activity of all of the chimeras. However, this correlation did not extend to antifungal activity. Some of the loop swap chimeras were efficient antifungal molecules, even though they bound poorly to PI(4,5)P2, suggesting that additional mechanisms operate against fungal cells. Unexpectedly, the loop 1B swap chimera was 10 times more active than NaD1 against filamentous fungi. This led to the conclusion that defensin loops have evolved as modular components that combine to make antifungal molecules with variable mechanisms of action and that artificial combinations of loops can increase antifungal activity compared to that of the natural variants.


Asunto(s)
Antifúngicos/farmacología , Defensinas/química , Defensinas/farmacología , Nicotiana/química , Antifúngicos/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Defensinas/genética , Defensinas/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Fusarium/efectos de los fármacos , Humanos , Liposomas , Neomicina/farmacología , Permeabilidad , Fosfatidilinositol 4,5-Difosfato/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
2.
Mol Plant Pathol ; 15(1): 67-79, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24015961

RESUMEN

Defensins are a large family of small, cysteine-rich, basic proteins, produced by most plants and plant tissues. They have a primary function in defence against fungal disease, although other functions have been described. This study reports the isolation and characterization of a class I secreted defensin (NaD2) from the flowers of Nicotiana alata, and compares its antifungal activity with the class II defensin (NaD1) from N. alata flowers, which is stored in the vacuole. NaD2, like all other class I defensins, lacks the C-terminal pro-peptide (CTPP) characteristic of class II defensins. NaD2 is most closely related to Nt-thionin from N. tabacum (96% identical) and shares 81% identity with MtDef4 from alfalfa. The concentration required to inhibit in vitro fungal growth by 50% (IC50 ) was assessed for both NaD1 and NaD2 for the biotrophic basidiomycete fungi Puccinia coronata f. sp. avenae (Pca) and P. sorghi (Ps), the necrotrophic pathogenic ascomycetes Fusarium oxysporum f. sp. vasinfectum (Fov), F. graminearum (Fgr), Verticillium dahliae (Vd) and Thielaviopsis basicola (Tb), and the saprobe Aspergillus nidulans. NaD1 was a more potent antifungal molecule than NaD2 against both the biotrophic and necrotrophic fungal pathogens tested. NaD2 was 5-10 times less effective at killing necrotrophs, but only two-fold less effective on Puccinia species. A new procedure for testing antifungal proteins is described in this study which is applicable to pathogens with spores that are not amenable to liquid culture, such as rust pathogens. Rusts are the most damaging fungal pathogens of many agronomically important crop species (wheat, barley, oats and soybean). NaD1 and NaD2 inhibited urediniospore germination, germ tube growth and germ tube differentiation (appressoria induction) of both Puccinia species tested. NaD1 and NaD2 were fungicidal on Puccinia species and produced stunted germ tubes with a granular cytoplasm. When NaD1 and NaD2 were sprayed onto susceptible oat plants prior to the plants being inoculated with crown rust, they reduced the number of pustules per leaf area, as well as the amount of chlorosis induced by infection. Similar to observations in vitro, NaD1 was more effective as an antifungal control agent than NaD2. Further investigation revealed that both NaD1 and NaD2 permeabilized the plasma membranes of Puccinia spp. This study provides evidence that both secreted (NaD2) and nonsecreted (NaD1) defensins may be useful for broad-spectrum resistance to pathogens.


Asunto(s)
Basidiomycota/efectos de los fármacos , Defensinas/farmacología , Grano Comestible/microbiología , Flores/metabolismo , Nicotiana/metabolismo , Secuencia de Aminoácidos , Antifúngicos/farmacología , Avena/efectos de los fármacos , Avena/microbiología , Basidiomycota/citología , Basidiomycota/crecimiento & desarrollo , Bioensayo , Defensinas/química , Defensinas/aislamiento & purificación , Grano Comestible/efectos de los fármacos , Flores/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Proteínas de Plantas/farmacología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/microbiología
3.
Antimicrob Agents Chemother ; 57(8): 3667-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23689717

RESUMEN

In recent decades, pathogenic fungi have become a serious threat to human health, leading to major efforts aimed at characterizing new agents for improved treatments. Promising in this context are antimicrobial peptides produced by animals and plants as part of innate immune systems. Here, we describe an antifungal defensin, NaD1, with activity against the major human pathogen Candida albicans, characterize the mechanism of killing, and identify protection strategies used by the fungus to survive defensin treatment. The mechanism involves interaction between NaD1 and the fungal cell surface followed by membrane permeabilization, entry into the cytoplasm, hyperproduction of reactive oxygen species, and killing induced by oxidative damage. By screening C. albicans mutant libraries, we identified that the high-osmolarity glycerol (HOG) pathway has a unique role in protection against NaD1, while several other stress-responsive pathways are dispensable. The involvement of the HOG pathway is consistent with induction of oxidative stress by NaD1. The HOG pathway has been reported to have a major role in protection of fungi against osmotic stress, but our data indicate that osmotic stress does not contribute significantly to the adverse effects of NaD1 on C. albicans. Our data, together with previous studies with human beta-defensins and salivary histatin 5, indicate that inhibition of the HOG pathway holds promise as a broad strategy for increasing the activity of antimicrobial peptides against C. albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Defensinas/farmacología , Nicotiana/química , Antifúngicos/química , Compuestos de Boro , Defensinas/química , Defensinas/aislamiento & purificación , Flores/química , Colorantes Fluorescentes , Glicerol , Pruebas de Sensibilidad Microbiana , Óxido Nítrico/metabolismo , Estrés Oxidativo , Fosforilación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
4.
ACS Chem Biol ; 6(4): 345-55, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21194241

RESUMEN

Cyclotides are plant proteins whose defining structural features are a head-to-tail cyclized backbone and three interlocking disulfide bonds, which in combination are known as a cyclic cystine knot. This unique structural motif confers cyclotides with exceptional resistance to proteolysis. Their endogenous function is thought to be as plant defense agents, associated with their insecticidal and larval growth-inhibitory properties. However, in addition, an array of pharmaceutically relevant biological activities has been ascribed to cyclotides, including anti-HIV, anthelmintic, uterotonic, and antimicrobial effects. So far, >150 cyclotides have been elucidated from members of the Rubiaceae, Violaceae, and Cucurbitaceae plant families, but their wider distribution among other plant families remains unclear. Clitoria ternatea (Butterfly pea) is a member of plant family Fabaceae and through its usage in traditional medicine to aid childbirth bears similarity to Oldenlandia affinis, from which many cyclotides have been isolated. Using a combination of nanospray and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analyses, we examined seed extracts of C. ternatea and discovered cyclotides in the Fabaceae, the third-largest family of flowering plants. We characterized 12 novel cyclotides, thus expanding knowledge of cyclotide distribution and evolution within the plant kingdom. The discovery of cyclotides containing novel sequence motifs near the in planta cyclization site has provided new insights into cyclotide biosynthesis. In particular, MS analyses of the novel cyclotides from C. ternatea suggest that Asn to Asp variants at the cyclization site are more common than previously recognized. Moreover, this study provides impetus for the examination of other economically and agriculturally significant species within Fabaceae, now the largest plant family from which cyclotides have been described.


Asunto(s)
Ciclotidas/química , Fabaceae/química , Extractos Vegetales/química , Proteínas de Plantas/química , Semillas/química , Secuencia de Aminoácidos , Ciclotidas/aislamiento & purificación , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Extractos Vegetales/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
J Mol Biol ; 395(3): 609-26, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19925809

RESUMEN

The 53-amino-acid trypsin inhibitor 1 from Nicotiana alata (T1) belongs to the potato type II family also known as the PinII family of proteinase inhibitors, one of the major families of canonical proteinase inhibitors. T1 contains four disulfide bonds, two of which (C4-C41 and C8-C37) stabilize the reactive-site loop. To investigate the influence of these two disulfide bonds on the structure and function of potato II inhibitors, we constructed two variants of T1, C4A/C41A-T1 and C8A/C37A-T1, in which these two disulfide bonds were individually removed and replaced by alanine residues. Trypsin inhibition assays show that wild-type T1 has a K(i) of <5 nM, C4A/C41A-T1 has a weaker K(i) of approximately 350 nM, and the potency of the C8A/C37A variant is further decreased to a K(i) of approximately 1.8 microM. To assess the influence of the disulfide bonds on the structure of T1, we determined the structure and dynamics of both disulfide variants by NMR spectroscopy. The structure of C4A/C41A-T1 and the amplitude of intrinsic flexibility in the reactive-site loop resemble that of the wild-type protein closely, despite the lack of the C4-C41 disulfide bond, whereas the timescale of motions is markedly decreased. The rescue of the structure despite loss of a disulfide bond is due to a previously unrecognized network of interactions, which stabilizes the structure of the reactive-site loop in the region of the missing disulfide bond, while allowing intrinsic motions on a fast (picosecond-nanosecond) timescale. In contrast, no comparable interactions are present around the C8-C37 disulfide bond. Consequently, the reactive-site loop becomes disordered and highly flexible in the structure of C8A/C37A-T1, making it unable to bind to trypsin. Thus, the reactive-site loop of T1 is stabilized differently by the C8-C37 and C4-C41 disulfide bonds. The C8-C37 disulfide bond is essential for the inhibitory activity of T1, whereas the C4-C41 disulfide bond is not as critical for maintaining the three-dimensional structure and function of the molecule but is responsible for maintaining flexibility of the reactive-site loop on a microsecond-nanosecond timescale.


Asunto(s)
Proteínas de Plantas/química , Inhibidores de Serina Proteinasa/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Cartilla de ADN/genética , Disulfuros/química , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secuencias Repetitivas de Aminoácido , Homología de Secuencia de Aminoácido , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/metabolismo , Solanum tuberosum/química , Nicotiana/química , Nicotiana/genética
6.
J Chromatogr B Analyt Technol Biomed Life Sci ; 872(1-2): 107-14, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18701356

RESUMEN

Progress in understanding the biosynthetic pathway of the cyclotides has been hampered as this unique family of cyclic plant peptides are notoriously difficult to analyse by standard proteomic approaches such as gel electrophoresis. We have developed a simple, rapid and robust strategy for the quantification of cyclotides in crude plant extracts using MALDI-TOF MS making use of generic peptides similar in mass to the analyte as internal standards for calibration. Linearity (r(2)>0.99) over two orders of magnitude (down to femtomole levels) was achieved in plant extracts, allowing quantitative analysis of transgenic and endogenous peptide expression.


Asunto(s)
Péptidos/análisis , Proteínas de Plantas/análisis , Western Blotting , Calibración , Cromatografía Líquida de Alta Presión , Ciclización , Modelos Moleculares , Estándares de Referencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta , Nicotiana/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA