Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982737

RESUMEN

Estrogen receptor-positive breast cancers (ER+ BCas) are the most common form of BCa and are increasing in incidence, largely due to changes in reproductive practices in recent decades. Tamoxifen is prescribed as a component of standard-of-care endocrine therapy for the treatment and prevention of ER+ BCa. However, it is poorly tolerated, leading to low uptake of the drug in the preventative setting. Alternative therapies and preventatives for ER+ BCa are needed but development is hampered due to a paucity of syngeneic ER+ preclinical mouse models that allow pre-clinical experimentation in immunocompetent mice. Two ER-positive models, J110 and SSM3, have been reported in addition to other tumour models occasionally shown to express ER (for example 4T1.2, 67NR, EO771, D2.0R and D2A1). Here, we have assessed ER expression and protein levels in seven mouse mammary tumour cell lines and their corresponding tumours, in addition to their cellular composition, tamoxifen sensitivity and molecular phenotype. By immunohistochemical assessment, SSM3 and, to a lesser extent, 67NR cells are ER+. Using flow cytometry and transcript expression we show that SSM3 cells are luminal in nature, whilst D2.0R and J110 cells are stromal/basal. The remainder are also stromal/basal in nature; displaying a stromal or basal Epcam/CD49f FACS phenotype and stromal and basal gene expression signatures are overrepresented in their transcript profile. Consistent with a luminal identity for SSM3 cells, they also show sensitivity to tamoxifen in vitro and in vivo. In conclusion, the data indicate that the SSM3 syngeneic cell line is the only definitively ER+ mouse mammary tumour cell line widely available for pre-clinical research.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Tamoxifeno , Humanos , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Animales , Ratones , Modelos Animales de Enfermedad , Receptores de Estrógenos/genética , Tamoxifeno/farmacología , Fenotipo , Inmunohistoquímica , Citometría de Flujo , Transcriptoma , Ratones de la Cepa 129 , RNA-Seq , Células Epiteliales , Glándulas Mamarias Animales/citología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética
2.
Drug Discov Today ; 27(1): 257-268, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469805

RESUMEN

The development of novel therapeutics is associated with high rates of attrition, with unexpected adverse events being a major cause of failure. Serious adverse events have led to organ failure, cancer development and deaths that were not expected outcomes in clinical trials. These life-threatening events were not identified during therapeutic development due to the lack of preclinical safety tests that faithfully represented human physiology. We highlight the successful application of several novel technologies, including high-throughput screening, organs-on-chips, microbiome-containing drug-testing platforms and humanised mouse models, for mechanistic studies and prediction of toxicity. We propose the incorporation of similar preclinical tests into future drug development to reduce the likelihood of hazardous therapeutics entering later-stage clinical trials.


Asunto(s)
Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Drogas en Investigación , Animales , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Drogas en Investigación/farmacología , Drogas en Investigación/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/tendencias
3.
Biochem Pharmacol ; 192: 114726, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34389322

RESUMEN

Migration and invasion promote tumor cell metastasis, which is the leading cause of cancer death. At present there are no effective treatments. Epidemiological studies have suggested that ω-3 polyunsaturated fatty acids (PUFA) may decrease cancer aggressiveness. In recent studies epoxide metabolites of ω-3 PUFA exhibited anti-cancer activity, although increased in vivo stability is required to develop useful drugs. Here we synthesized novel stabilized ureido-fatty acid ω-3 epoxide isosteres and found that one analogue - p-tolyl-ureidopalmitic acid (PTU) - inhibited migration and invasion by MDA-MB-231 breast cancer cells in vitro and in vivo in xenografted nu/nu mice. From proteomics analysis of PTU-treated cells major regulated pathways were linked to the actin cytoskeleton and actin-based motility. The principal finding was that PTU impaired the formation of actin protrusions by decreasing the secretion of Wnt5a, which dysregulated the Wnt/planar cell polarity (PCP) pathway and actin cytoskeletal dynamics. Exogenous Wnt5a restored invasion and Wnt/PCP signalling in PTU-treated cells. PTU is the prototype of a novel class of agents that selectively dysregulate the Wnt/PCP pathway by inhibiting Wnt5a secretion and actin dynamics to impair MDA-MB-231 cell migration and invasion.


Asunto(s)
Citoesqueleto/metabolismo , Ácidos Grasos Omega-3/farmacología , Transducción de Señal/fisiología , Proteína Wnt-5a/antagonistas & inhibidores , Proteína Wnt-5a/metabolismo , Animales , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Ácidos Grasos Omega-3/química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/patología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
4.
Nat Rev Clin Oncol ; 14(1): 32-44, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27550857

RESUMEN

Despite progressive improvements in the management of patients with locoregionally confined, advanced-stage solid tumours, distant metastasis remains a very common - and usually fatal - mode of failure after attempted curative treatment. Surgery and radiotherapy are the primary curative modalities for these patients, often combined with each other and/or with chemotherapy. Distant metastasis occurring after treatment can arise from previously undetected micrometastases or, alternatively, from persistent locoregional disease. Another possibility is that treatment itself might sometimes cause or promote metastasis. Surgical interventions in patients with cancer, including biopsies, are commonly associated with increased concentrations of circulating tumour cells (CTCs). High CTC numbers are associated with an unfavourable prognosis in many cancers. Radiotherapy and systemic antitumour therapies might also mobilize CTCs. We review the preclinical and clinical data concerning cancer treatments, CTC mobilization and other factors that might promote metastasis. Contemporary treatment regimens represent the best available curative options for patients who might otherwise die from locally confined, advanced-stage cancers; however, if such treatments can promote metastasis, this process must be understood and addressed therapeutically to improve patient survival.


Asunto(s)
Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología , Antineoplásicos/efectos adversos , Terapia Biológica , Ensayos Clínicos como Asunto , Humanos , Inmunidad Celular/efectos de la radiación , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Neoplasias/cirugía , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA