Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(46): 12267-12272, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087346

RESUMEN

The transmission of viral infections between plant and fungal hosts has been suspected to occur, based on phylogenetic and other findings, but has not been directly observed in nature. Here, we report the discovery of a natural infection of the phytopathogenic fungus Rhizoctonia solani by a plant virus, cucumber mosaic virus (CMV). The CMV-infected R. solani strain was obtained from a potato plant growing in Inner Mongolia Province of China, and CMV infection was stable when this fungal strain was cultured in the laboratory. CMV was horizontally transmitted through hyphal anastomosis but not vertically through basidiospores. By inoculation via protoplast transfection with virions, a reference isolate of CMV replicated in R. solani and another phytopathogenic fungus, suggesting that some fungi can serve as alternative hosts to CMV. Importantly, in fungal inoculation experiments under laboratory conditions, R. solani could acquire CMV from an infected plant, as well as transmit the virus to an uninfected plant. This study presents evidence of the transfer of a virus between plant and fungus, and it further expands our understanding of plant-fungus interactions and the spread of plant viruses.


Asunto(s)
Cucumovirus/fisiología , Enfermedades de las Plantas/virología , Rhizoctonia/virología , Solanum tuberosum/virología , Cucumovirus/patogenicidad , Hifa/virología , Enfermedades de las Plantas/microbiología , Protoplastos/microbiología , Protoplastos/virología , Solanum tuberosum/microbiología , Virión/patogenicidad , Virión/fisiología
2.
Mol Plant Microbe Interact ; 24(2): 207-18, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20977309

RESUMEN

Beet necrotic yellow vein virus (BNYVV) is an economically important pathogen of sugar beet and has been found worldwide, probably as the result of recent worldwide spread. The BNYVV genome consists of four or five RNA components. Here, we report analysis of sequence variation in the RNA3-p25, RNA4-p31, RNA2-CP, and RNA5-p26 genes of 73 worldwide isolates. The RNA3-p25 gene encodes virulence and avirulence factors. These four sets of gene sequences each fell into two to four groups, of which the three groups of p25 formed eight subgroups with different geographical distributions. Each of these subgroup isolates (strains) could have arisen from four original BNYVV population and their mixed infections. The genetic diversity for BNYVV was relatively small. Selection pressure varied greatly depending on the BNYVV gene and geographical location. Isolates of the Italy strain, in which p25 was subject to the strongest positive selection, were able to overcome the Rz1-host resistance gene to differing degrees, whereas other geographically limited strains could not. Resistance-breaking variants were generated by p25 amino acid changes at positions 67 and 68. Our studies suggest that BNYVV originally evolved in East Asia and has recently become a pathogen of cultivated sugar beet followed by the emergence of new resistance-breaking variants.


Asunto(s)
Beta vulgaris/virología , Evolución Molecular , Variación Genética , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Filogenia , Filogeografía , Hojas de la Planta/virología , Raíces de Plantas/virología , Virus de Plantas/patogenicidad , Virulencia
3.
J Gen Virol ; 89(Pt 5): 1314-1323, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18420811

RESUMEN

The RNA3-encoded p25 protein of beet necrotic yellow vein virus (BNYVV) is responsible for the production of rhizomania symptoms of sugar beet roots (Beta vulgaris subsp. vulgaris). Here, it was found that the presence of the p25 protein is also associated with the resistance response in rub-inoculated leaves of sugar beet and wild beet (Beta vulgaris subsp. maritima) plants. The resistance phenotype displayed a range of symptoms from no visible lesions to necrotic or greyish lesions at the inoculation site, and only very low levels of virus and viral RNA accumulated. The susceptible phenotype showed large, bright yellow lesions and developed high levels of virus accumulation. In roots after Polymyxa betae vector inoculation, however, no drastic differences in virus and viral RNA accumulation levels were found between plants with susceptible and resistant phenotypes, except at an early stage of infection. There was a genotype-specific interaction between BNYVV strains and two selected wild beet lines (MR1 and MR2) and sugar beet cultivars. Sequence analysis of natural BNYVV isolates and site-directed mutagenesis of the p25 protein revealed that 3 aa residues at positions 68, 70 and 179 are important in determining the resistance phenotype, and that host-genotype specificity is controlled by single amino acid changes at position 68. The mechanism of the occurrence of resistance-breaking BNYVV strains is discussed.


Asunto(s)
Beta vulgaris/inmunología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/inmunología , Virus ARN/fisiología , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Beta vulgaris/virología , Análisis Mutacional de ADN , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales/genética
4.
J Gen Virol ; 88(Pt 5): 1611-1619, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17412994

RESUMEN

RNA3 and RNA4 of beet necrotic yellow vein virus (BNYVV) are not essential for virus multiplication, but are associated with vector-mediated infection and disease development in sugar beet roots. Here, a unique role for RNA4 in virus transmission, virulence and RNA silencing suppression was demonstrated. Mutagenic analysis revealed that the RNA4-encoded p31 open reading frame (ORF) was involved in efficient vector transmission and slight enhancement of symptom expression in some Beta species. No effects of RNA4 on virus accumulation in infected tissue were observed. Furthermore, the p31 ORF was involved in the induction of severe symptoms by BNYVV in Nicotiana benthamiana plants without affecting viral RNA accumulation. In contrast, RNA3-encoded p25, previously identified as a major contributor to symptom induction in sugar beet, had no such effect on N. benthamiana. In two different silencing suppression assays, neither p31 nor p25 was able to suppress RNA silencing in leaves, but the presence of p31 enhanced a silencing suppressor activity in roots without alteration in viral RNA accumulation. Thus, BNYVV p31 plays a multifunctional role in efficient vector transmission, enhanced symptom expression and root-specific silencing suppression.


Asunto(s)
Beta vulgaris/virología , Closterovirus/genética , Enfermedades de las Plantas/virología , ARN Viral/genética , Secuencia de Bases , Cartilla de ADN , Regulación Viral de la Expresión Génica , Silenciador del Gen , Vectores Genéticos , Sistemas de Lectura Abierta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA