Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 350: 141121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185423

RESUMEN

The use of lignocellulosic waste as an energy source for substituting fossil fuels has attracted lots of attention, and pyrolysis has been established as an effective technology for this purpose. However, the utilization of bio-oil derived from non-catalytic pyrolysis faces certain constraints, making it impractical for direct application in advanced sectors. This study has focused on overcoming these challenges by employing fractional condensation of pyrolytic vapors at distinct temperatures. The potential of five types of sawdust for producing high-quality bio-oil through pyrolysis conducted with a bench-scale bubbling fluidized bed reactor was investigated for the first time. The highest yield of bio-oil (61.94 wt%) was produced using sample 3 (damaged timber). Remarkably, phenolic compounds were majorly gathered in the 1st and 2nd condensers at temperatures of 200 °C and 150 °C, respectively, attributing to their higher boiling points. Whereas, carboxylic acid, ketones, and furans were mainly collected in the 3rd (-5 °C) and 4th (-20 °C) condensers, having high water content in the range of 35.33%-65.09%. The separation of acidic nature compounds such as acetic acid in the 3rd and 4th was evidenced by its low pH in the range of 4-5, while the pH of liquid collected in the 1st and 2nd condensers exhibited higher pH (6-7). The well-separated bio-oil derived from biomass pyrolysis facilitates its wide usage in various applications, proposing a unique approach toward carbon neutrality. In particular, achieving efficient separation of phenolic compounds in bio-oil is important, as these compounds can undergo further upgrading to generate hydrocarbons and diesel fuel.


Asunto(s)
Calor , Polifenoles , Pirólisis , Biocombustibles , Aceites de Plantas , Fenoles/análisis , Biomasa
2.
Environ Res ; 215(Pt 1): 114016, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35977586

RESUMEN

Biochar is a carbon-neutral solid fuel and has emerged as a potential candidate to replace coal. Meanwhile, spent coffee grounds (SCGs) are an abundant and promising biomass waste that could be used for biochar production. This study develops a biochar valorization strategy by mixing SCGs with hydrogen peroxide (H2O2) at a weight ratio of 1:0.75 to upgrade SCG biochar. In this dual pretreatment method, the H2O2 oxidative ability at a pretreatment temperature of 105 °C contributes to an increase in the higher heating value (HHV) and carbon content of the SCG biochars. The HHV and carbon content of biochar increase by about 6.5% and 7.8%, respectively, when compared to the unpretreated one under the same conditions. Maximized biochar's HHV derived via the Taguchi method is 30.33 MJkg-1, a 46.9% increase compared to the raw SCG, and a 6.5% increase compared to the unpretreated SCG biochar. The H2O2 concentration is 18% for the maximized HHV. A quantitative identification index of intensity of difference (IOD) is adopted to evaluate the contributive level of H2O2 pretreatment in terms of the HHV and carbon content. IOD increases with increasing H2O2 pretreatment temperature. Before torrefaction, SCGs' IOD pretreated at 50 °C is 1.94%, while that pretreated at 105 °C is 8.06%. This is because, before torrefaction, H2O2 pretreatment sufficiently weakens SCGs' molecular structure, resulting in a higher IOD value. The IOD value of torrefied SCGs (TSCG) pretreated at 105 °C is 10.71%, accounting for a 4.59% increase compared to that pretreated at 50 °C. This implies that TSCG pretreated by H2O2 at 105 °C has better thermal stability. For every 1% increase in IOD of TSCG, the carbon content of the biochar increases 0.726%, and the HHV increases 0.529%. Overall, it is demonstrated that H2O2 is a green and promising pretreatment additive for upgrading SCG biochar's calorific value, and torrefied SCGs can be used as a potential solid fuel to approach carbon neutrality.


Asunto(s)
Café , Peróxido de Hidrógeno , Biomasa , Carbono , Carbón Orgánico , Carbón Mineral
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120963, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35144079

RESUMEN

In this study, we prepared nitrogen-doped carbon dots (xNCDs) using hydrothermally-treated bitter tea oil residue with urea for the detection of metal ions by monitoring the photoluminescence quenching. The quantum yields of the xNCDs increased from approximately 3.85% (CDs) to 5.5% (3NCDs) and 7.2% (1NCDs), revealing that nitrogen doping effectively increases the fluorescence emission. The increased emission of the xNCDs can be attributed to radiative recombination resulting from the π-π* transition of the C=C or the n-π* transition between the C=O or N=O of sp3 units. Moreover, the CDs have abundant surface-attached phenolic and hydroxyl groups that coordinate with Fe3+ ions and quench the fluorescence. Conversely, Hg2+ ions preferentially adsorb on nitrogen-containing groups, such as amide-carbonyl groups (O=C-NH2) and pyridinic and pyrrolic functionalities, on the surface of the NCDs owing to their strong affinity, quenching the substantial photoluminescence emissions. Our results suggest that bitter tea oil residue-derived carbon dots can be used to selectively detect metal ions, such as Fe3+ and Hg2+, by doping with nitrogen using urea as a nitrogen precursor.


Asunto(s)
Mercurio , Puntos Cuánticos , Carbono/química , Iones , Mercurio/análisis , Nitrógeno/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia , , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA