Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 153(3): 487-496, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34152528

RESUMEN

BACKGROUND: Animal brain-tumor models have demonstrated a synergistic interaction between radiation therapy and a ketogenic diet (KD). Metformin has in-vitro anti-cancer activity, through AMPK activation and mTOR inhibition. We hypothesized that the metabolic stress induced by a KD combined with metformin would enhance radiation's efficacy. We sought to assess the tolerability and feasibility of this approach. METHODS: A single-institution phase I clinical trial. Radiotherapy was either 60 or 35 Gy over 6 or 2 weeks, for newly diagnosed and recurrent gliomas, respectively. The dietary intervention consisted of a Modified Atkins Diet (ModAD) supplemented with medium chain triglycerides (MCT). There were three cohorts: Dietary intervention alone, and dietary intervention combined with low-dose or high-dose metformin; all patients received radiotherapy. Factors associated with blood ketone levels were investigated using a mixed-model analysis. RESULTS: A total of 13 patients were accrued, median age 61 years, of whom six had newly diagnosed and seven with recurrent disease. All completed radiation therapy; five patients stopped the metabolic intervention early. Metformin 850 mg three-times daily was poorly tolerated. There were no serious adverse events. Ketone levels were associated with dietary factors (ketogenic ratio, p < 0.001), use of metformin (p = 0. 02) and low insulin levels (p = 0.002). Median progression free survival was ten and four months for newly diagnosed and recurrent disease, respectively. CONCLUSIONS: The intervention was well tolerated. Higher serum ketone levels were associated with both dietary intake and metformin use. The recommended phase II dose is eight weeks of a ModAD combined with 850 mg metformin twice daily.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Terapia Combinada , Glioma/tratamiento farmacológico , Glioma/radioterapia , Humanos , Cetonas , Metformina/uso terapéutico , Persona de Mediana Edad , Recurrencia Local de Neoplasia
2.
Hum Mutat ; 39(1): 69-79, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29044765

RESUMEN

Primary coenzyme Q10 (CoQ10 ; MIM# 607426) deficiencies are an emerging group of inherited mitochondrial disorders with heterogonous clinical phenotypes. Over a dozen genes are involved in the biosynthesis of CoQ10 , and mutations in several of these are associated with human disease. However, mutations in COQ5 (MIM# 616359), catalyzing the only C-methylation in the CoQ10 synthetic pathway, have not been implicated in human disease. Here, we report three female siblings of Iraqi-Jewish descent, who had varying degrees of cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, and cognitive disability. Whole-exome and subsequent whole-genome sequencing identified biallelic duplications in the COQ5 gene, leading to reduced levels of CoQ10 in peripheral white blood cells of all affected individuals and reduced CoQ10 levels in the only muscle tissue available from one affected proband. CoQ10 supplementation led to clinical improvement and increased the concentrations of CoQ10 in blood. This is the first report of primary CoQ10 deficiency caused by loss of function of COQ5, with delineation of the clinical, laboratory, histological, and molecular features, and insights regarding targeted treatment with CoQ10 supplementation.


Asunto(s)
Vías Biosintéticas/genética , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Metiltransferasas/deficiencia , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/deficiencia , Ubiquinona/análogos & derivados , Biopsia , Ataxia Cerebelosa/dietoterapia , Ataxia Cerebelosa/metabolismo , Variaciones en el Número de Copia de ADN , Suplementos Dietéticos , Transporte de Electrón , Femenino , Fibroblastos/metabolismo , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucocitos/metabolismo , Metiltransferasas/genética , Encefalomiopatías Mitocondriales/dietoterapia , Encefalomiopatías Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Músculos/patología , Consumo de Oxígeno , Linaje , Polimorfismo de Nucleótido Simple , Hermanos , Ubiquinona/biosíntesis
3.
Ophthalmic Genet ; 38(6): 549-554, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28388263

RESUMEN

PURPOSE: This study reports the presentation of two families with gyrate atrophy (GA). The aim of this study was to characterize the potential effect of therapeutic regimens on macular edema. METHODS: Two unrelated patients with GA were studied for the potential effect of low protein diet (≤ 0.8 g/kg/d), and oral administration of pyridoxine (500 mg/day), on serum ornithine levels, best corrected visual acuity (BCVA), slit-lamp, OCT, and auto-fluorescence findings. Blood samples for DNA, mRNA, and exons of the OAT gene were screened for mutations and splicing effect when relevant. RESULTS: At presentation, both patients manifested typical ophthalmic features of GA including cystoid macular edema (CME). One patient also exhibited optic nerve head hamartoma. Following treatment ornithine levels have lessened, BCVA improved, and central macular thickness (CMT) markedly decreased in all four studied eyes. The molecular pathologic features included a novel splice site mutation (c.900+1G>A). CONCLUSIONS: We have identified a novel mutation and two formerly described mutations in patients with GA. Of them, one patient comprised an unusual phenotype including bilateral astrocytic hamartomas. We have recognized for the first time improvement in CME following treatment with low protein intake and pyridoxine supplement. This finding may have significance in the understanding of treatment options for macular edema regardless of underlying etiology.


Asunto(s)
Dieta con Restricción de Proteínas , Atrofia Girata/dietoterapia , Edema Macular/fisiopatología , Piridoxina/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Administración Oral , Adolescente , Adulto , Terapia Combinada , Consanguinidad , Análisis Mutacional de ADN , Exones/genética , Femenino , Atrofia Girata/sangre , Atrofia Girata/genética , Humanos , Masculino , Ornitina/sangre , Ornitina-Oxo-Ácido Transaminasa/genética , Sitios de Empalme de ARN , ARN Mensajero/genética , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología
4.
J Inherit Metab Dis ; 33(3): 195-210, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20464498

RESUMEN

Genetic mutations that severely diminish the activity of aspartoacylase (ASPA) result in the fatal brain dysmyelinating disorder, Canavan disease. There is no effective treatment. ASPA produces free acetate from the concentrated brain metabolite, N-acetylaspartate (NAA). Because acetyl coenzyme A is a key building block for lipid synthesis, we postulated that the inability to catabolize NAA leads to a brain acetate deficiency during a critical period of CNS development, impairing myelination and possibly other aspects of brain development. We tested the hypothesis that acetate supplementation during postnatal myelination would ameliorate the severe phenotype associated with ASPA deficiency using the tremor rat model of Canavan disease. Glyceryltriacetate (GTA) was administered orally to tremor rats starting 7 days after birth, and was continued in food and water after weaning. Motor function, myelin lipids, and brain vacuolation were analyzed in GTA-treated and untreated tremor rats. Significant improvements were observed in motor performance and myelin galactocerebroside content in tremor rats treated with GTA. Further, brain vacuolation was modestly reduced, and these reductions were positively correlated with improved motor performance. We also examined the expression of the acetyl coenzyme A synthesizing enzyme acetyl coenzyme A synthase 1 and found upregulation of expression in tremor rats, with a return to near normal expression levels in GTA-treated tremor rats. These results confirm the critical role played by NAA-derived acetate in brain myelination and development, and demonstrate the potential usefulness of acetate therapy for the treatment of Canavan disease.


Asunto(s)
Acetatos/uso terapéutico , Ácido Aspártico/análogos & derivados , Enfermedad de Canavan/terapia , Mutación , Animales , Ácido Aspártico/metabolismo , Ácido Aspártico/uso terapéutico , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Lípidos/química , Masculino , Vaina de Mielina/química , Fenotipo , Ratas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA