Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-34454690

RESUMEN

The abusive consumption of thermogenic supplements occurs worldwide and deserves special attention due to their use to stimulate weight loss and prevent obesity. Thermogenic formulations usually contain Synephrine (SN) and Caffeine (CAF), stimulating compounds extracted from natural sources, but no genetic toxicology studies have predicted this hazardous combination potential. This study examined the toxicogenomic responses induced by SN and CAF, either alone or in combination, in the human hepatic cell line HepG2 in vitro. SN (0.03-30 µM) and CAF (0.6-600 µM) alone did neither decrease cell viability nor induce DNA damage, as assessed using the MTT and comet assays, respectively. SN (3 µM) and CAF (30-600 µM) were combined at concentrations similar to those found in commercial dietary supplements. SN/CAF at 3:90 and 3:600 µM ratios significantly decreased cell viability and increased DNA damage levels in HepG2 cells. CAF (600 µM) and the SN/CAF association at 3:60, 3:90, and 3:600 µM ratios promoted cell death by apoptosis, as demonstrated by flow cytometry. Similar results were observed in gene expression (RT-qPCR): SN/CAF up-regulated the expression of apoptosis- (BCL-2 and CASP9) and DNA repair-related (XPC) genes. SN/CAF at 3:90 µM also downregulated the expression of cell cycle control (CDKN1A) genes. In conclusion, the SN/CAF combination reduces cell viability by inducing apoptosis, damages DNA, and modulates the transcriptional expression of apoptosis-, cell cycle-, and DNA repair-related genes in human hepatic (HepG2) cells in vitro. These effects can be worrisome to consumers of thermogenic supplements.


Asunto(s)
Apoptosis/efectos de los fármacos , Cafeína/farmacología , Daño del ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Sinefrina/farmacología , Transcripción Genética/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa/métodos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico
2.
Nutrients ; 13(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34444642

RESUMEN

Fatty acids play a significant role in maintaining cellular and DNA protection and we previously found an inverse relationship between blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DNA damage. The aim of this study was to explore differences in proteomic profiles, for 117 pro-inflammatory proteins, in two previously defined groups of individuals with different DNA damage and EPA and DHA levels. Healthy children and adolescents (n = 140) aged 9 to 13 years old in an urban area of Brazil were divided by k-means cluster test into two clusters of DNA damage (tail intensity) using the comet assay (cluster 1 = 5.9% ± 1.2 and cluster 2 = 13.8% ± 3.1) in our previous study. The cluster with higher DNA damage and lower levels of DHA (6.2 ± 1.6 mg/dL; 5.4 ± 1.3 mg/dL, p = 0.003) and EPA (0.6 ± 0.2 mg/dL; 0.5 ± 0.1 mg/dL, p < 0.001) presented increased expression of the proteins CDK8-CCNC, PIK3CA-PIK3R1, KYNU, and PRKCB, which are involved in pro-inflammatory pathways. Our findings support the hypothesis that low levels of n-3 long-chain PUFA may have a less protective role against DNA damage through expression of pro-inflammatory proteins, such as CDK8-CCNC, PIK3CA-PIK3R1, KYNU, and PRKCB.


Asunto(s)
Daño del ADN , Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Ácidos Grasos Omega-3/sangre , Adolescente , Brasil , Niño , Fosfatidilinositol 3-Quinasa Clase I/sangre , Fosfatidilinositol 3-Quinasa Clase Ia/sangre , Estudios Transversales , Ciclina C/sangre , Quinasa 8 Dependiente de Ciclina/sangre , Femenino , Humanos , Hidrolasas/sangre , Inflamación/metabolismo , Masculino , Proteína Quinasa C beta/sangre , Proteómica
3.
Nat Prod Res ; 34(17): 2528-2532, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30623721

RESUMEN

Copaifera langsdorffii L. is one of the most known medicinal species in Brazil. Its leaves are rich in phenolic compounds with potential biological activities as an antioxidant and chelating agent. This paper reports the isolation of four compounds from the hydroalcoholic extract of the leaves of C. langsdorffii and the investigation of their possible cytoprotective effects against heavy metal poisoning. Quercitrin (1), afzelin (2), 3,5-di-O-(3-O-methyl galloyl) quinic acid (3) and 4,5-di-O-(3-O-methyl galloyl) quinic acid (4), were associated with toxic doses of methylmercury and lead and evaluated by Alamar blue cell viability assays in HepG2 and PC12. The compounds displayed significant cytoprotective effect for the HepG2 cell line against both metals. Compounds 1-4 did not protect PC12 cells against methylmercury induced-cytotoxicity, but at lower concentrations, they protected against lead induced-cytotoxicity. The evaluated compounds showed a promising cytoprotection effect against exposure to heavy metals and should be further investigated as protective agents.


Asunto(s)
Fabaceae/química , Intoxicación por Metales Pesados/tratamiento farmacológico , Compuestos de Metilmercurio/antagonistas & inhibidores , Extractos Vegetales/farmacología , Sustancias Protectoras/aislamiento & purificación , Animales , Antioxidantes , Brasil , Línea Celular , Intoxicación por Metales Pesados/prevención & control , Humanos , Plomo/toxicidad , Intoxicación por Plomo/tratamiento farmacológico , Intoxicación por Plomo/prevención & control , Manósidos , Intoxicación por Mercurio/tratamiento farmacológico , Intoxicación por Mercurio/prevención & control , Compuestos de Metilmercurio/toxicidad , Fenoles , Hojas de la Planta/química , Proantocianidinas , Sustancias Protectoras/farmacología , Quercetina/análogos & derivados , Ácido Quínico , Ratas
4.
Eur J Nutr ; 59(7): 2985-2995, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31724083

RESUMEN

PURPOSE: Açai pulp is a source of phytochemicals and has been associated with antioxidant, anti-inflammatory, and antigenotoxic effects. This study aimed to assess the effects of açai pulp consumption on oxidative, inflammatory, and aerobic capacity markers of cyclist athletes. RESEARCH METHODS AND PROCEDURES: A crossover, randomized, placebo-controlled, single-blind study was developed with ten male cyclists (33.5 ± 4.7 years old, body mass index of 23.9 ± 1.38 kg/m2, and training load around 1875 ± 238 AU/week). The athletes consumed 400 g/day of pasteurized açai pulp (AP) or placebo (PL) for 15 days, with a 30-day wash-out period between trials. Lipid peroxidation, serum antioxidant capacity, DNA damage in peripheral blood (Comet assay), IL-6 and TNF-alpha, blood lactate concentration during effort, anaerobic threshold intensity (ATi), maximum workload reached (Wmax), rating of perceived exertion threshold (RPET), and heart rate threshold (HRT) were evaluated before and after each intervention. Data were analyzed using a linear regression model with mixed effects (p ≤ 0.05). RESULTS: Increased serum antioxidant capacity (p = 0.006) and decreased lipid peroxidation (p = 0.01) were observed in subjects after intervention with AP. Blood lactate levels during effort significantly decreased (by 29%, p = 0.025) and ATi increased (p = 0.006) after AP. No significant effect on DNA damage was attributed to AP consumption. CONCLUSION: We found notable effects of AP intervention on antioxidant status in athletes. Both the reduction in blood lactate concentration and increase in ATi during the effort suggest an overall improvement in the aerobic capacity of the cyclists, confirming that AP consumption may influence variables associated with performance in endurance athletes.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Adulto , Suplementos Dietéticos , Humanos , Lactatos , Masculino , Método Simple Ciego
5.
Toxicology ; 422: 25-34, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31004705

RESUMEN

Thermogenic supplements containing synephrine (SN) are widely used to weight loss. SN is a proto-alkaloid naturally found in the bark of immature fruits of Citrus aurantium (bitter orange) that has been added to thermogenic supplements due to its chemical and pharmacological similarity with adrenergic amines, such as ephedrine and amphetamines. Although orally ingested SN is mainly metabolized in the liver, it remains unclear whether it affects the redox status and genetic material of human hepatic cells. The present study aims to examine whether SN affects cell viability, cell cycle, redox balance, genomic stability, and expression of the DNA damage response (DDR)-related genes ATM, ATR, CHEK1, CHECK2, TP53, and SIRT1 in HepG2 cells - used as in vitro hepatocyte model. SN induced overproduction of intracellular reactive oxygen species (ROS) after 6 h of treatment with the three concentrations tested (2, 20 and 200 µM). After 24 h of treatment, SN at 200 µM induced intracellular ROS overproduction and exerted cytostatic effects, while SN at 20 and 200 µM increased the levels of GPx and GSH. SN was not cytotoxic (2-5000 µM), genotoxic, and mutagenic and did not alter the expression of DDR-related genes (2-200 µM), indicating that the fast/specific SN metabolization and upregulation of antioxidant defense components to detoxify intracellular ROS were sufficient to prevent intracellular damage in HepG2 cells. In conclusion, SN showed no cytotoxic, genotoxic, and mutagenic potential at relevant concentrations for thermogenic users in human hepatic cells in vitro, although, it plays pro-oxidative action, and cytostatic effects. Taken together, our results suggest that other investigations about the hazard absence of this thermogenic compound should be performed.


Asunto(s)
Citotoxinas/toxicidad , Suplementos Dietéticos/efectos adversos , Oxidantes/toxicidad , Sinefrina/toxicidad , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
6.
J Toxicol Environ Health A ; 82(4): 299-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30909850

RESUMEN

Vitamin D3 deficiency has been correlated with altered expression of genes associated with increased blood pressure (BP); however, the role of vitamin D3 supplementation in the genetic mechanisms underlying hypertension remains unclear. Thus, the aim of this study was investigate the consequences of vitamin D3 supplemented (10,000 IU/kg) or deficient (0 IU/kg) diets on regulation of expression of genes related to hypertension pathways in heart cells of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. An additional aim was to assess the impact of vitamin D3 on DNA damage and oxidative stress markers. The gene expression profiles were determined by PCR array, DNA damage was assessed by an alkaline comet assay, and oxidative stress markers by measurement of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels. In SHR rats data showed that the groups of genes most differentially affected by supplemented and deficient diets were involved in BP regulation and renin-angiotensin system. In normotensive WKY controls, the profile of gene expression was similar between the two diets. SHR rats were more sensitive to changes in gene expression induced by dietary vitamin D3 than normotensive WKY animals. In addition to gene expression profile, vitamin D3 supplemented diet did not markedly affect DNA or levels of TBARS and GSH levels in both experimental groups. Vitamin D3 deficient diet produced lipid peroxidation in SHR rats. The results of this study contribute to a better understanding of the role of vitamin D3 in the genetic mechanisms underlying hypertension. Abbreviations: AIN, American Institute of Nutrition; EDTA, disodium ethylenediaminetetraacetic acid; GSH, glutathione; PBS, phosphate buffer solution; SHR, spontaneously hypertensive rats; TBARS, thiobarbituric acid reactive substances; WKY, Wistar Kyoto.


Asunto(s)
Daño del ADN/efectos de los fármacos , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Deficiencia de Vitamina D/fisiopatología , Vitamina D/uso terapéutico , Animales , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
7.
Food Res Int ; 105: 996-1002, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29433299

RESUMEN

DNA damage and inflammation are promising targets in disease prevention studies. Since these pathways have shown to be modulated by dietary components, investigating the molecular effects of food becomes relevant. This study aimed at investigating the protective effects of cocoplum (Chrysobalanus icaco L.) against doxorubicin (DXR)-induced damage. Rats were treated with cocoplum (100, 200 or 400mg/kg/day) for 14days, associated or not with DXR (15mg/kg b.w.). Tissue-targeted comet assay and the oxidative stress parameters oxidized/reduced glutathione and catalase were investigated in liver, kidney, and heart. The expressions of DNA damage/repair (Gadd45a, Parp1, Xrcc2) and proinflammatory genes (Il-1ß, Il-6, Nf-κb, Tnf-α) were performed by real-time quantitative PCR. Cocoplum decreased DNA damage and the expressions of Gadd45a, Il-1ß, and Tnf-α induced by DXR. These findings demonstrate that cocoplum fruits possess antigenotoxic and anti-inflammatory effects against DXR-induced damage and encourage other in vivo/clinical studies with this fruit.


Asunto(s)
Antiinflamatorios/farmacología , Antimutagênicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Chrysobalanaceae/química , Daño del ADN/efectos de los fármacos , Doxorrubicina/toxicidad , Interleucina-1beta/metabolismo , Proteínas Nucleares/metabolismo , Extractos Vegetales/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antiinflamatorios/aislamiento & purificación , Antimutagênicos/aislamiento & purificación , Catalasa/metabolismo , Proteínas de Ciclo Celular/genética , Ensayo Cometa , Regulación hacia Abajo , Glutatión/metabolismo , Interleucina-1beta/genética , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética
8.
J Toxicol Environ Health A ; 80(19-21): 1116-1128, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28880739

RESUMEN

Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Citocinas/metabolismo , Suplementos Dietéticos , Regulación de la Expresión Génica , Corazón/fisiología , Hígado/fisiología , Metionina , Animales , Biomarcadores/sangre , Enfermedades Cardiovasculares/etiología , Dieta , Femenino , Homocisteína/sangre , Hígado/metabolismo , Ratones , Miocardio/metabolismo , Estrés Oxidativo
9.
Mutat Res Genet Toxicol Environ Mutagen ; 798-799: 19-26, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26994490

RESUMEN

Deficiency of vitamin D3, a lipophilic micronutrient, plays a role in the development of some chronic diseases. Vitamin D3 deficiency affects 25-50% of the human population and has been associated with increased risk for development of hypertension. DNA damage induced by reactive oxygen species (ROS) occurs more often in hypertensive than in normotensive individuals, and vitamin D3 status can influence this relationship. The aim of this study was to evaluate whether a diet supplemented with (10,000 IU/kg) or deficient in (0 IU/kg) vitamin D3, compared to a vitamin D3 control diet (1000 IU/kg), would modulate DNA damage and ROS production in spontaneously hypertensive rats (SHR) and normotensive control Wistar-Kyoto (WKY) rats after 12 weeks of treatment. ROS production was assessed by measuring the oxidative burst of neutrophils. DNA damage was evaluated using the comet assay in peripheral blood and the micronucleus test in bone marrow and peripheral blood. Vitamin D3 supplementation did not induce DNA damage and did not change neutrophil ROS production in SHR and WKY rats. Vitamin D3 deficiency induced neutrophil ROS production and a high frequency of micronucleus formation in the bone marrow and peripheral blood of SHR rats only, and induced DNA damage (comet) in peripheral blood of both SHR and WKY rats. In conclusion, vitamin D3 deficiency showed a more pronounced effect on hypertensive animals. Population studies are needed to test whether this relationship also exists in humans.


Asunto(s)
Colecalciferol/deficiencia , Hipertensión/etiología , Neutrófilos/metabolismo , Animales , Colecalciferol/fisiología , Colecalciferol/uso terapéutico , Daño del ADN , Suplementos Dietéticos , Modelos Animales de Enfermedad , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Neutrófilos/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Especies Reactivas de Oxígeno , Estallido Respiratorio
10.
Mol Nutr Food Res ; 60(7): 1615-24, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26935476

RESUMEN

SCOPE: Vitamin B6 plays crucial roles on brain development and its maternal deficiency impacts the gamma-aminobutyric acid (GABA)ergic, serotonergic, glutamatergic, and dopaminergic systems in offspring. However, the molecular mechanisms underlying these neurological changes are not well understood. Thus, we aimed at evaluating which components of those neurotransmitter metabolism and signaling pathways can be modulated by maternal vitamin B6 -deficient or B6 -supplementated diets in the hippocampus of rat dams and their offspring. METHODS AND RESULTS: Female Wistar rats were fed three different diets: control (6 mg vitamin B6 /kg), supplemented (30 mg vitamin B6 /kg) or deficient diet (0 mg vitamin B6 /kg), from 4 weeks before pregnancy through lactation. Newborn pups (10 days old) from rat dams fed vitamin B6 -deficient diet presented hyperhomocysteinemia and had a significant increase in mRNA levels of glutamate decarboxylase 1 (Gad1), fibroblast growth factor 2 (Fgf2), and glutamate-ammonia ligase (Glul), while glutaminase (Gls) and tryptophan hydroxylase 1 (Tph1) mRNAs were downregulated. Vitamin B6 supplementation or deficiency did not change hippocampal global DNA methylation. CONCLUSION: A maternal vitamin B6 -deficient diet affects the expression of genes related to GABA, glutamate, and serotonin metabolisms in offspring by regulating Gad1, Glul, Gls, and Tph1 mRNA expression.


Asunto(s)
Hipocampo/efectos de los fármacos , Deficiencia de Vitamina B 6/sangre , Vitamina B 6/administración & dosificación , Vitamina B 6/sangre , Animales , Animales Recién Nacidos , Metilación de ADN , Suplementos Dietéticos , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico/metabolismo , Glutaminasa/genética , Glutaminasa/metabolismo , Hipocampo/metabolismo , Homocisteína/sangre , Ratas , Ratas Wistar , Serotonina/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Deficiencia de Vitamina B 6/tratamiento farmacológico , Ácido gamma-Aminobutírico/metabolismo
11.
J Toxicol Environ Health A ; 79(4): 174-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26914397

RESUMEN

This study investigates the potential beneficial effects of niacin (NA; vitamin B3) supplementation in rats chronically exposed to methylmercury (MeHg). Animals were randomly assigned to one of 4 groups (n = 6): Group I, control, received distilled water by gavage; Group II, received MeHg (100 µg/kg/d) by gavage; Group III, received NA (50 mg/kg/d) in drinking water; Group IV, received MeHg (100 µg/kg/d) by gavage + NA (50 mg/kg/d) in drinking water. Biochemical parameters levels of glucose, triglycerides, total cholesterol and fractions, and enzyme activities aspartate transaminase (AST) and alanine transaminase (ALT) were determined. Further, oxidative stress markers activity of glutathione peroxidase (GPx) and catalase (CAT) activity, as well as levels of reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide, were examined, and the comet assay was performed, using blood/plasma. Hg levels were measured in blood, brain, and kidneys of animals. Our results demonstrated that NA reduced adverse effects produced by MeHg. The mechanism underlying these effects appears to be related to the intrinsic antioxidant potential of NA. Considering the beneficial effects attributed to NA following MeHg exposure and that fish are the main source of both NA and MeHg, future studies need to evaluate the potential counteractive effect of NA against the adverse consequences of MeHg exposure in fish-eating populations.


Asunto(s)
Antioxidantes/metabolismo , Compuestos de Metilmercurio/toxicidad , Niacina/farmacología , Estrés Oxidativo/efectos de los fármacos , Complejo Vitamínico B/farmacología , Animales , Suplementos Dietéticos/análisis , Masculino , Compuestos de Metilmercurio/sangre , Niacina/administración & dosificación , Ratas , Ratas Wistar , Complejo Vitamínico B/administración & dosificación
12.
Artículo en Inglés | MEDLINE | ID: mdl-26421053

RESUMEN

Chamomile is a medicinal plant, which presents several biological effects, especially the anti-inflammatory effect. One of the compounds related to this effect is apigenin, a flavonoid that is mostly found in its glycosylated form, apigenin-7-glucoside (APG), in natural sources. However, the affectivity and safety of this glycoside have not been well explored for topical application. In this context, the aim of this work was to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC-DAD) method to quantify APG in chamomile preparations. Additionally, the safety and the anti-inflammatory potential of this flavonoid were verified. The RP-HPLC-DAD method was developed and validated with linearity at 24.0-36.0 µg/mL range (r = 0.9994). Intra- and interday precision (RSD) were 0.27-2.66% and accuracy was 98.27-101.21%. The validated method was applied in the analysis of chamomile flower heads, glycolic extract, and Kamillen cream, supporting the method application in the quality control of chamomile preparations. Furthermore, the APG safety was assessed by MTT cytotoxicity assay and mutagenic protocols and the anti-inflammatory activity was confirmed by a diminished TNF-α production showed by mice macrophages treated with APG following LPS treatment.

13.
Mol Nutr Food Res ; 58(7): 1502-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24827819

RESUMEN

SCOPE: A compromised nutritional status in methyl-group donors may provoke several molecular alterations triggering the development of nonalcoholic fatty liver disease (NAFLD) in humans and experimental animals. In this study, we investigated a role and the underlying molecular mechanisms of methionine metabolic pathway malfunctions in the pathogenesis of NAFLD. METHODS AND RESULTS: We fed female Swiss albino mice a control (methionine-adequate) diet and two experimental (methionine-deficient or methionine-supplemented) diets for 10 weeks, and the levels of one-carbon metabolites, expression of one-carbon and lipid metabolism genes in the livers were evaluated. We demonstrate that both experimental diets increased hepatic levels of S-adenosyl-l-homocysteine and homocysteine, altered expression of one-carbon and lipid metabolism genes, and caused lipid accumulation, especially in mice fed the methionine-deficient diet. Markers of oxidative and ER stress response were also elevated in the livers of mice fed either diet. CONCLUSION: Our findings indicate that both dietary methionine deficiency and methionine supplementation can induce molecular abnormalities in the liver associated with the development of NAFLD, including deregulation in lipid and one-carbon metabolic pathways, and induction of oxidative and ER stress. These pathophysiological events may ultimately lead to lipid accumulation in the livers, triggering the development of NAFLD.


Asunto(s)
Suplementos Dietéticos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Metionina/administración & dosificación , Metionina/deficiencia , Animales , Femenino , Glutatión/sangre , Homocisteína/sangre , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Triglicéridos/sangre
14.
Phytother Res ; 28(1): 28-32, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23436457

RESUMEN

Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation.


Asunto(s)
Antihipertensivos/farmacología , Frutas/química , Hipertensión/tratamiento farmacológico , Passiflora/química , Animales , Antihipertensivos/química , Antioxidantes/metabolismo , Ácido Ascórbico/química , Presión Sanguínea/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Carotenoides/química , Cromatografía Líquida de Alta Presión , Creatinina/sangre , Flavonoides/química , Glutatión/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Estrés Oxidativo , Fenoles/química , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Espectrometría de Masas en Tándem , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
15.
Food Chem Toxicol ; 62: 456-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24036140

RESUMEN

Inadequate nutrient intake can influence the genome. Since methionine is an essential amino acid that may influence DNA integrity due to its role in the one-carbon metabolism pathway, we were interested in whether methionine imbalance can lead to genotoxic events. Adult female Swiss mice were fed a control (0.3% dl-methionine), methionine-supplemented (2.0% DL-methionine) or methionine-deficient (0% DL-methionine) diet over a 10-week period. Chromosomal damage was assessed in peripheral blood using a micronucleus test, and DNA damage was assessed in the liver, heart and peripheral blood tissues using a comet assay. The mRNA expression of the mismatch repair genes Mlh1 and Msh2 was analyzed in the liver. The frequency of micronucleus in peripheral blood was increased by 122% in the methionine-supplemented group (p<0.05). The methionine-supplemented diet did not induce DNA damage in the heart and liver tissues, but it increased DNA damage in the peripheral blood. The methionine-deficient diet reduced basal DNA damage in liver tissue. This reduction was correlated with decreased mRNA expression of Msh2. Our results demonstrate that methionine has a tissue-specific effect because methionine-supplemented diet induced both chromosomal and DNA damage in peripheral blood while the methionine-deficient diet reduced basal DNA damage in the liver.


Asunto(s)
Inestabilidad Cromosómica/efectos de los fármacos , Metionina/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Sanguíneas/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Dieta , Suplementos Dietéticos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , Pruebas de Micronúcleos , Homólogo 1 de la Proteína MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética
16.
J Med Food ; 16(3): 268-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23444962

RESUMEN

In this study, the ethanolic extract obtained from piquiá pulp was assessed for genotoxicity and oxidative stress by employing the micronucleus test in bone marrow and peripheral blood cells in addition to comet, thiobarbituric-acid-reactive substances (TBARS), and reduced glutathione assays in the liver, kidney, and heart. Additionally, phytochemical analyses were performed to identify and quantify the chemical constituents of the piquiá extract. Wistar rats were treated by gavage with an ethanolic extract from piquiá pulp (75 mg/kg body weight) for 14 days, and 24 h prior to euthanasia, they received an injection of saline or doxorubicin (15 mg/kg body weight, intraperoneally). The results demonstrated that piquiá extract at the tested dose was genotoxic but not mutagenic, and it increased the TBARS levels in the heart. Further studies are required to fully elucidate how the properties of ethanolic extract of piquiá pulp can affect human health.


Asunto(s)
Ericales/efectos adversos , Frutas/efectos adversos , Corazón/efectos de los fármacos , Mutágenos/efectos adversos , Estrés Oxidativo , Extractos Vegetales/efectos adversos , Animales , Bovinos , Ensayo Cometa , Glutatión/metabolismo , Humanos , Masculino , Ratones , Pruebas de Micronúcleos , Miocardio/metabolismo , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
17.
Genet Mol Biol ; 35(3): 664-72, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23055807

RESUMEN

Copaiba oil-resin, extracted from the trunk of Copaifera, and traditionally used in folk medicine in the treatment of various disorders, has been shown to be an effective antiinflamatory, antitumor, antitetanus, antiseptic and anti-blenorrhagea agent. As, there are few studies evaluating its genotoxicity, this aspect of the commercial oil-resin, and its volatile and resinous fractions, were evaluated in mice by comet assay and micronucleus (MN) test. A single dose of oil resin, volatile or resin fractions (500; 1,000 or 2,000 mg/kg b.w.) was administered by gavage. The chemical compositions of Copaiba oil resin and its fractions was analyzed by gas chromatography. According to comet assaying, treatment with either one did not increase DNA damage, and as to MN testing, there was no alteration in the incidence of micronucleated polychromatic erythrocytes. Chromatographic analysis of the oil-resin itself revealed sesquiterpenes, diterpenic carboxylic acid methyl esters and high levels of ß-caryophyllene. Thus, it can be assumed that the oil resin and volatile and resinous fractions from the commercial product are not genotoxic or mutagenic.

18.
Food Chem Toxicol ; 50(12): 4412-20, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22982473

RESUMEN

BACKGROUND: Canova activates macrophages and indirectly induces lymphocyte proliferation. Here we evaluated the effects of Canova in cyclophosphamide-treated non-human primates. METHODS: Twelve Cebus apella were evaluated. Four animals were treated with Canova only. Eight animals were treated with two doses of cyclophosphamide (50 mg/kg) and four of these animals received Canova. Body weight, biochemistry and hematologic analyses were performed for 40 days. Micronucleus and comet assays were performed for the evaluation of DNA damage. RESULTS: We observed that cyclophosphamide induced abnormal WBC count in all animals. However, the group treated with cyclophosphamide plus Canova presented a higher leukocyte count than that which received only cyclophosphamide. Cyclophosphamide induced micronucleus and DNA damage in all animals. The frequency of these alterations was significantly lower in the Canova group than in the group without this medicine. CONCLUSIONS: Our results demonstrated that Canova treatment minimizes cyclophosphamide myelotoxicity in C. apella.


Asunto(s)
Ciclofosfamida/efectos adversos , Materia Medica/farmacología , Animales , Cebus , Proliferación Celular/efectos de los fármacos , Ensayo Cometa/métodos , Daño del ADN/efectos de los fármacos , Homeopatía , Leucocitos/efectos de los fármacos , Leucocitos/patología , Activación de Linfocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Masculino , Pruebas de Micronúcleos/métodos
19.
Environ Mol Mutagen ; 53(7): 535-41, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22847942

RESUMEN

Populations in the Amazon are exposed to organic mercury via consumption of contaminated foods. These ethnic groups consume a specific plant seed "annatto" which contains certain carotenoids. The aim of this study was to find out if these compounds (bixin, BIX and norbixin, NOR), protect against DNA-damage caused by the metal. Therefore, rats were treated orally with methylmercury (MeHg) and with the carotenoids under conditions that are relevant to humans. The animals were treated either with MeHg (30 µg/kg/bw/day), BIX (0.1-10 mg/kg/bw/day), NOR (0.01-1.0 mg/kg/bw/day) or combinations of the metal compound and the carotenoids consecutively for 45 days. Subsequently, the glutathione levels (GSH) and the activity of catalase were determined, and DNA-damage was measured in hepatocytes and leukocytes using single cell gel electrophoresis assays. Treatment with the metal alone caused a decrease in the GSH levels (35%) and induced DNA damage, which resulted in increased DNA migration after electrophoresis in liver and blood cells, whereas no effects were seen with the carotenoids alone. When BIX or NOR were given in combination with organic mercury, the intermediate and the highest concentrations of the carotenoids (1.0 and 10.0 mg/kg/bw/day BIX and 0.1 and 1.0 mg/kg/bw/day NOR) protected against DNA-damage. Furthermore, we found with both carotenoids, a moderate increase in the GSH levels in both metal-treated and untreated animals, while the activities of catalase remained unchanged. Our results indicate that consumption of BIX and NOR may protect humans against the adverse health effects caused by exposure to organic mercury.


Asunto(s)
Bixaceae/química , Carotenoides/química , Carotenoides/farmacología , Daño del ADN/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Compuestos de Metilmercurio/toxicidad , Extractos Vegetales/química , Análisis de Varianza , Animales , Carotenoides/administración & dosificación , Catalasa/metabolismo , Ensayo Cometa , Glutatión/metabolismo , Compuestos de Metilmercurio/administración & dosificación , Compuestos de Metilmercurio/sangre , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Wistar
20.
Plant Foods Hum Nutr ; 67(2): 171-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22562095

RESUMEN

This study investigated the in vivo genotoxicity of piquiá pulp (Caryocar villosum) and its potential antigenotoxicity on doxorubicin (DXR)-induced DNA damage by comet assay and micronucleus test. In addition, the phytochemicals present in piquiá pulp were determined. Piquiá fruit pulp (75, 150 or 300 mg/kg b.w.) was administered by gavage to Wistar rats for 14 days, and the animals received an injection of saline or DXR (15 mg/kg b.w., i.p.) 24 h before they were euthanized. The phytochemical analysis revealed the presence of carotenoids; phenolic compounds, including flavonoids; tannins and α-tocopherol in piquiá pulp. No statistically significant differences were observed in the evaluated parameters, demonstrating the absence of cytotoxic and genotoxic effects of piquiá pulp at all tested doses. In liver, kidney, cardiac and bone marrow cells, piquiá significantly reduced the DNA damage induced by DXR. Our results showed that the lowest piquiá dose caused the largest decrease in DNA damage and the highest dose caused the smallest decrease, demonstrating an inverse dose-response of piquiá pulp. Furthermore, we observed a difference in the potential antigenotoxic effects in several tissues. In conclusion, our results demonstrated that piquiá pulp was not genotoxic and inhibited the genotoxicity induced by DXR, but some of the protective effects that were observed depended on the doses and experimental conditions. Therefore, further investigations are needed to clarify how piquiá pulp positively affects human health.


Asunto(s)
Antimutagênicos/farmacología , Ericales/química , Frutas/química , Extractos Vegetales/farmacología , Animales , Ensayo Cometa/métodos , Daño del ADN/efectos de los fármacos , Doxorrubicina/toxicidad , Flavonoides/análisis , Flavonoides/farmacología , Corazón/efectos de los fármacos , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Pruebas de Micronúcleos/métodos , Ratas , Ratas Wistar , Taninos/análisis , Taninos/farmacología , alfa-Tocoferol/análisis , alfa-Tocoferol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA