Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Prod Bioprospect ; 13(1): 45, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902881

RESUMEN

Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.

2.
Z Naturforsch C J Biosci ; 77(7-8): 263-270, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34902232

RESUMEN

In the current study, five different plants, Syzygium Cumini, Fagonia cretica, Acacia modesta, Withania coagulans, and Olea europaea aqueous extracts were prepared and applied against the anticancer and antibacterial activities. It was observed that O. Europaea extract shows the highest anticancer activity with cell viability of 21.5%. All the five plants extract was also used against the inhibition of Bacillus subtilis where O. Europaea extract shows a promising inhibitory activity of 3.2 cm followed by W. coagulans. Furthermore, W. coagulans was subjected to the process of column chromatography as a result a withanolide was isolated. The fast atom bombardment mass spectrometry (FAB-MS) and high resolution fast atom bombardment (HRFAB-MS) [M + 1] indicated molecular weight at m/z 453 and molecular formula C28H37O5. The UV-Vis. spectrum shows absorbance at 210 nm suggesting the presence of conjugated system, and Fourier-transform infrared spectroscopy (FTIR) was recorded to explore the functional groups. Similarly, 1D and 2D NMR spectroscopy techniques such as 1H, 13C NMR, correlation spectroscopy (COSY-45°), heteronuclear single quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC) and Nuclear Overhauser effect Spectroscopy (NOESY) techniques was carried out to determine the unknown natural product. The collective data of all these techniques established the structure of the unknown compound and recognized as a withanolide.


Asunto(s)
Plantas Medicinales , Withania , Witanólidos , Antibacterianos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Withania/química , Witanólidos/química
3.
Mater Sci Eng C Mater Biol Appl ; 111: 110829, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279826

RESUMEN

This study concentrates on biosynthesis of Silver Nanoparticles (AgNPs) from stem extract of Acacia nilotica (A. nilotica). The reaction was completed at a temperature ~40-45 °C and time duration of 5 h. AgNPs were thoroughly investigated via advanced characterization techniques such as UV-Vis spectrophotometry (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffractometry (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), X-ray Photoelectron Spectroscopy (XPS), Thermo Gravimetric Analysis (TGA), Diffuse Reflectance Spectroscopy (DRS), Brunner-Emmett-Teller (BET), Dynamic Light Scattering (DLS), and Zeta potential analysis. AgNPs with average size below 50 nm were revealed by all the measuring techniques. Maximum surface area ~5.69 m2/g was reported for the as synthesized NPs with total pore volume ~0.0191 mL/g and average pore size ~1.13 nm. Physical properties such as size and shape have changed the surface plasmon resonance peak in UV-visible spectrum. Antimicrobial activity was reported due to denaturation of microbial ribosome's sulphur and phosphorus bond by silver ions against bacterium Methicillin Resistant Staphylococcus aureus (MRSA) and fungus Candida Albican (CA). Furthermore, AgNPs degraded toxic pollutants such as 4-nitrophenol (4-NP), 2-nitrophenol (2-NP) and various hazardous dyes such as Congo Red (CR), Methylene Blue (MB) and Methyl Orange (MO) up to 95%. The present work provided low cost, green and an effective way for synthesis of AgNPs which were utilized as potential antimicrobial agents as well as effective catalyst for detoxification of various pollutants and dyes.


Asunto(s)
Acacia/metabolismo , Antiinfecciosos/farmacología , Contaminantes Ambientales/toxicidad , Nanopartículas del Metal/química , Compuestos Orgánicos/toxicidad , Metabolismo Secundario , Plata/farmacología , Candida albicans/efectos de los fármacos , Catálisis , Colorantes/química , Dispersión Dinámica de Luz , Cinética , Nanopartículas del Metal/ultraestructura , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nitrógeno/química , Nitrofenoles/química , Espectroscopía de Fotoelectrones , Extractos Vegetales/farmacología , Metabolismo Secundario/efectos de los fármacos , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Temperatura , Termogravimetría , Difracción de Rayos X
4.
J Photochem Photobiol B ; 182: 62-70, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29621690

RESUMEN

The eco-friendly biosynthesis of silver nanoparticles (AgNps) from bark extract of Albizia chevalier are reported here for their anti-proliferative, antibacterial and pollutant degradation potentials. The synthesized AgNps were characterized by FTIR spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-rays spectrometry (EDS) and X-ray diffraction studies. The TEM and FESEM images show a monodispersed spherical shaped particles of approximately 30 nm. Crystalline peaks were obtained for the synthesized AgNps in XRD spectrum. The AgNps were investigated for in vitro anticancer and antibacterial activities and its potential to degrade 4-nitrophenol (4-NP) and congo red dye (CR). The MTT results shows a significant dose-dependent antiproliferation effect of the AgNps on the cell lines HepG2, MDA-MB-231 and MFC7. The effect was found more pronounced in MDA-MB-231 as compared to MFC-7 cell lines. The antibacterial results indicated 99 and 95% killing of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) respectively, after 24 h of incubation with the AgNps. The AgNps were found to speed up the reductive degradation of 4-NP and CR dye, which give an alternative route for the removal of toxic organic pollutants from the wastewater. The synthesized AgNps were not only used as a bactericidal and anticancer agent, but also effectively used for the reductive degradation of carcinogenic compounds which are listed as the priority pollutants. Therefore, AgNps have the potential for the treatment of various cancers, bacterial infections and for industrial detoxification of wastewater.


Asunto(s)
Albizzia/química , Rojo Congo/química , Nanopartículas del Metal/química , Nitrofenoles/química , Extractos Vegetales/farmacología , Plata/química , Plata/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Corteza de la Planta/química , Extractos Vegetales/química , Contaminantes Químicos del Agua/química
5.
J Photochem Photobiol B ; 175: 99-108, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28865320

RESUMEN

The study concentrate on the biosynthesis of silver nanoparticles (AgNps) from the leaves extract of Guiera senegalensis with focus on its; antiproliferation effect on prostate (PC3), breast (MCF7) and liver (HepG2) cancer cell lines, antibacterial effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and the degradation on 4-nitrophenol (4-NP) and congo red dye (CR). The synthesized AgNps were characterized by FTIR, TEM, FESEM, XRD and EDX analysis. The EDS spectrum revealed that the synthesized nanoparticles (Nps) were composed of 55.45% Ag atoms of spherical shape with approximately 50nm size, identified from TEM and FESEM data. The antiproliferation effect of the AgNps varies with cell lines in a concentration dependent manner. The result showed that the AgNps were more effective on PC3 (IC50 23.48µg/mL) than MCF7 (29.25µg/mL) and HepG2 (33.25µg/mL) by the virtue of their IC50 values. The AgNps were highly effective against E. coli and S. aureus by killing 99% colonies. The AgNps also shows a good catalytic reduction of the toxic organic pollutants in which only 3mg of the AgNps degraded 95% of both CR dye and 4-NP in 22 and 36min respectively. Therefore, the green synthesis of AgNps may have potential applications in pharmacology and industries for the treatment of cancers, bacterial infections and in degrading toxic organic pollutants in water.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Combretaceae/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Catálisis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Combretaceae/metabolismo , Escherichia coli/efectos de los fármacos , Tecnología Química Verde , Células Hep G2 , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Nitrofenoles/química , Tamaño de la Partícula , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Staphylococcus aureus/efectos de los fármacos , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA