Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 3461-3473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617799

RESUMEN

Purpose: Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods: Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results: The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (-23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion: Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Quitosano , Glicina/análogos & derivados , Neoplasias Hepáticas , Nanopartículas , Piridinas , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Conductos Biliares Intrahepáticos
2.
Biomedicines ; 11(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37371821

RESUMEN

Diabetic neuropathy (DN) causes sensory dysfunction, such as numbness, tingling, or burning sensations. Traditional medication may not ease pain and discomfort, but natural remedies such as Berberine (BR) and vitamin E or Tocopherol (TOC) have therapeutic potential to reduce inflammation while improving nerve function. Novel substances offer a more potent alternative method for managing severe chronic neuropathic pain that does not react to standard drug therapy by targeting various pathways that regulate it. Rats with diabetic control received oral doses of BR + TOC that showed significant changes in serum insulin levels compared to DN controls after 90 days, suggesting a decrease in sensitivity to painful stimuli partly by modulating the oxidative stress of the inflammatory pathway such as TNF-α suppression or stimulation of TNF-α depending on the amount of dose consumed by them. NF-kB also played its role here. Administering doses of BR and TOC reduced heightened levels of NF-kB and AGEs, effectively counteracting inflammation-targeted key factors in diabetes, promising possibilities for the benefits of these molecules revealed through in vivo investigation. In summary, treating neuropathy pain with a more comprehensive and organic approach can involve harnessing the powerful capabilities of BR and TOC. These compounds have been found to not only considerably decrease inflammation but also provide effective nerve protection while enhancing overall nerve function. With their multifunctional impacts on various neuropathic pain pathways in the body, these naturally occurring substances offer an exciting possibility for those who encounter high levels of neuropathic distress that do not respond well to conventional medication-centred therapies.

3.
Antibiotics (Basel) ; 12(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37237738

RESUMEN

Aegle mamelons (A. marmelos) or Indian Bael leaves possess anti-cancerous and antibacterial properties and are used in the traditional medicine system for the treatment of oral infections. In the present study, the essential oil of the leaves of A. marmelos was explored for its anticancer, antioxidant, and anti-cariogenic properties. The hydro-distilled oil of A. marmelos leaves was analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Monoterpene limonene (63.71%) was found to have the highest percentage after trans-2-Hydroxy-1,8-cineole and p-Menth-2,8-dien-1-ol. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to investigate the anticancer activity of the extracted oil against human oral epidermal carcinoma (KB), and the results showed significantly higher (**** p < 0.0001) anticancer activity (45.89%) in the doxorubicin (47.87%) when compared to the normal control. The antioxidant activity of the essential oil was evaluated using methods of DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)). The results showed a significant (*** p < 0.001) percentage of inhibition of DPPH-induced free radical (70.02 ± 1.6%) and ABTS-induced free radical (70.7 ± 1.32%) at 100 µg/mL with IC50, 72.51 and 67.33 µg/mL, respectively, comparatively lower than standard compound ascorbic acid. The results of the molecular docking study of the significant compound limonene with the receptors tyrosinase and tyrosine kinase 2 supported the in vitro antioxidant potential. The anti-cariogenic activity was evaluated against Streptococcus mutans (S. mutans). Results showed a significant minimum inhibitor concentration of 0.25 mg/mL and the killing time was achieved at 3 to 6 h. The molecular-docking study showed that limonene inhibits the surface receptors of the S. mutans c-terminal domain and CviR protein. The study found that A. marmelos leaves have potential anti-carcinoma, antioxidant, and anti-cariogenic effects on human oral epidermal health, making them a valuable natural therapeutic agent for managing oral cancer and infections.

4.
Gels ; 9(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36975642

RESUMEN

Novel antibiotics are needed due to the rise of antibiotic-resistant pathogens. Traditional antibiotics are ineffective due to antibiotic-resistant microorganisms, and finding alternative therapies is expensive. Hence, plant-derived caraway (Carum carvi) essential oils and antibacterial compounds have been selected as alternatives. In this, caraway essential oil as an antibacterial treatment was investigated using a nanoemulsion gel. Using the emulsification technique, a nanoemulsion gel was developed and characterized in terms of particle size, polydispersity index, pH, and viscosity. The results showed that the nanoemulsion had a mean particle size of 137 nm and an encapsulation efficiency of 92%. Afterward, the nanoemulsion gel was incorporated into the carbopol gel and was found to be transparent and uniform. The gel had in vitro cell viability and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The gel safely delivered a transdermal drug with a cell survival rate of over 90%. With a minimal inhibitor concentration (MIC) of 0.78 mg/mL and 0.78 mg/mL, respectively, the gel demonstrated substantial inhibition for E. coli and S. aureus. Lastly, the study demonstrated that caraway essential oil nanoemulsion gels can be efficient in treating E. coli and S. aureus, laying the groundwork for the use of caraway essential oil as an alternative to synthetic antibiotics in the treatment of bacterial infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA