Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
In Vivo ; 38(1): 73-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148056

RESUMEN

BACKGROUND/AIM: Oxidative stress, regulated by SOD2 and mitochondrial dynamics, contributes to muscle atrophy in diabetes. Ginger root extract (GRE) reduces oxidative stress. However, its effect on oxidative stress, mitochondrial dynamics, and muscle atrophy is not known in the diabetic muscle. This study examined the effect of GRE on intramuscular oxidative stress, mitochondrial dynamics, and muscle size in diabetic rats. MATERIALS AND METHODS: Twenty-six male Sprague-Dawley rats were randomly divided into control diet (CON; n=10), high-fat diet with one dose of 35 mg/kg streptozotocin (HFD; n=9), and high-fat diet with one dose of 35 mg/kg streptozotocin and 0.75% w/w GRE (GRE; n=7) fed for seven weeks. Subsequently, the muscle was analyzed for cross-sectional area (CSA), H2O2 concentration, and DRP-1, MFN2, Parkin, PINK1, SOD2 mRNA. Additionally, the protein levels of SOD2, DRP-1, DRP-1ser616, LC3AB, MFN2, OPA1, Parkin, and PINK1 were analyzed. CSA, H2O2 concentration, and gene and protein expression levels were analyzed using a one-way ANOVA. Correlations among intramuscular H2O2, CSA, and SOD2 protein were assessed using Pearson's bivariate correlation test. RESULTS: In the soleus, the GRE group had a greater CSA and lower intramuscular H2O2 concentration compared to the HFD group. Compared to the HFD group, the GRE group had higher SOD2 and DRP-1 mRNA levels and lower MFN2 and total OPA1 protein levels. H2O2 concentration was negatively correlated with CSA and positively correlated with SOD2. CONCLUSION: GRE attenuated intramuscular H2O2, mitochondrial fusion, and muscle size loss. These findings suggest that GRE supplementation in diabetic rats reduces oxidative stress, which may contribute to muscle size preservation.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Zingiber officinale , Ratas , Masculino , Animales , Dinámicas Mitocondriales , Diabetes Mellitus Experimental/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacología , Peróxido de Hidrógeno , Ratas Sprague-Dawley , Músculo Esquelético , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Dietéticos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Ubiquitina-Proteína Ligasas , ARN Mensajero/metabolismo , Dieta Alta en Grasa
2.
In Vivo ; 36(6): 2638-2649, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36309365

RESUMEN

BACKGROUND/AIM: With diabetes, skeletal muscle mitochondrial quality (fusion, fission & mitophagy) and muscle mass are compromised. Geranylgeraniol (GGOH) can prevent mitochondrial damage, inflammation, and improve muscle health; however, the effect of GGOH on a diabetic model is not known. This study aimed to determine the effect of GGOH on mitochondrial quality and muscle mass in diabetic rats. MATERIALS AND METHODS: Sprague-Dawley rats were divided into three groups: regular diet (CON; n=7), high-fat-diet with 35 mg/kg body weight of streptozotocin (STZ) (HFD; n=7), and HFD/STZ with 800 mg/kg of GGOH (GG; n=7) for a total of 8 weeks. At the end of the study, soleus and gastrocnemius muscles were collected and analyzed for gene and protein expression of OPA1, MFN2, DRP1, p-DRP, LC3AB, PINK1, Parkin, SOD2, NF-[Formula: see text]B, IL-6, TNF-α, and IL-1ß. Additionally, the cross-sectional area (CSA) of soleus muscles was analyzed. RESULTS: In soleus, HFD group had significantly higher IL-1ß and lower LC3A, MFN2, DRP1, and SOD2 mRNA expression compared to CON group. The GG group had higher PINK1 mRNA expression than the HFD group. Additionally, the GG group had lower LC3B and DRP1 protein than the HFD group and lower LC3A and MFN2 protein than the HFD and CON groups. Lastly, HFD and GG groups had a smaller CSA than CON group, whereas GG had a greater CSA than HFD. CONCLUSION: GGOH supplementation could prevent mitochondrial fragmentation and potentially decrease the demand for mitochondrial fusion. Additionally, autophagosome degradation occurred at a greater rate than formation, indicating increased clearance of damaged organelles. Improved mitochondrial quality could potentially rescue muscle CSA in diabetic rats with GGOH supplementation.


Asunto(s)
Diabetes Mellitus Experimental , Ratas , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratas Sprague-Dawley , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinasas/metabolismo , Suplementos Dietéticos , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA