Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Microencapsul ; 41(1): 1-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37966469

RESUMEN

AIM: This study aimed to prepare, characterise, and evaluate the antidiabetic activity of Coccinia grandis (L.) extracts encapsulated alginate nanoparticles. METHODS: Alginate nanoparticles were prepared using the ionic gelation method and characterised by encapsulation efficiency %w/w, loading capacity %w/w, particle size analysis, zeta potential, Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). In vitro antidiabetic activity was also evaluated. RESULTS: Encapsulation efficiency %w/w, loading capacity %w/w, mean diameter, zeta potential of C. grandis encapsulated alginate nanoparticles ranged from 10.51 ± 0.51 to 62.01 ± 1.28%w/w, 0.39 ± 0.04 to 3.12 ± 0.11%w/w, 191.9 ± 76.7 to 298.9 ± 89.6 nm, -21.3 ± 3.3 to -28.4 ± 3.4 mV, respectively. SEM and FTIR confirmed that particles were in nano range with spherical shape and successful encapsulation of plant extracts into an alginate matrix. The antidiabetic potential of aqueous extract of C. grandis encapsulated alginate nanoparticles (AqCG-ANP) exhibited inhibition in α-amylase, α-glucosidase and dipeptidyl peptidase IV enzymes of 60.8%c/c, 19.1%c/c, and 30.3%c/c, respectively, compared to the AqCG. CONCLUSION: The AqCG-ANP exerted promising antidiabetic potential as an antidiabetic drug lead.


Asunto(s)
Cucurbitaceae , Nanopartículas , Alginatos/química , Hipoglucemiantes/farmacología , Nanopartículas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cucurbitaceae/química , Espectroscopía Infrarroja por Transformada de Fourier
2.
J Food Sci ; 88(12): 4942-4961, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37960942

RESUMEN

Nanoencapsulated bael fruit (Aegle marmelos L. Correa (Family: Rutaceae)) extracts reveal novel prospects in the development of dietary supplements with improved biological activities in the field of the food industry. The main objectives of this study were to prepare and characterize aqueous, ethanol, 50% ethanol, and 50% acetone extracts of bael fruit encapsulated alginate nanoparticles and investigate the effect of encapsulation on in vitro release of polyphenols, antidiabetic, antioxidant, and anti-inflammatory activities, and their stability. Bael fruit extracts encapsulated alginate nanoparticles were prepared using the ionic gelation method. Characterization, in vitro release profiles of polyphenols, determination of antidiabetic, anti-inflammatory, antioxidant activity, and accelerated stability were conducted. The results of the characterization confirmed the successful encapsulation of extracts of bael fruit in the alginate matrix. The aqueous extract of bael fruit encapsulated alginate nanoparticles exhibited a more controlled slow-release profile, accounting for 21.82% ± 1.17% and 48.14% ± 0.52% of polyphenols at solutions of pH 1.2 and pH 6.8, respectively. In general, the results of the bioactivity assessment suggested that nanoencapsulation could facilitate the enhancement of its antidiabetic, antioxidant, and anti-inflammatory properties. The results of thermogravimetric analysis and thin layer chromatography fingerprint showed the stability of aqueous bael fruit extract encapsulated alginate nanoparticles at 27 and 4°C over a month. In summary, the results of this study revealed the potency of nanoencapsulated aqueous extract of bael fruit to develop a dietary supplement with improved antidiabetic, antioxidant, and anti-inflammatory activities. PRACTICAL APPLICATION: The encapsulation of bael fruit extracts into a nanocarrier enhances bioactivities and promotes the controlled release of bioactive compounds. This could be useful in the future food industry, based on scientifically proven data, and inspire the market by means of the development of dietary supplements. Overall, the results would facilitate the formulation of novel commercially elegant nanoencapsulated dietary supplements with improved potential to manage a healthy life.


Asunto(s)
Aegle , Nanopartículas , Rutaceae , Aegle/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alginatos , Antioxidantes/farmacología , Frutas , Polifenoles , Suplementos Dietéticos , Hipoglucemiantes , Etanol , Antiinflamatorios/farmacología
3.
Turk J Chem ; 47(4): 715-725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38174060

RESUMEN

Bioactive compounds in medicinal plants are more susceptible to preventing oxidative stress. Encapsulation of herbal extracts has empowered the properties and characteristics of bioactive compounds. Nanoencapsulation allows the enhancement of the stability of extracts and targeted drug delivery. The present study aims to determine the antioxidant activity of alginate nanoparticles encapsulating the aqueous extract of Coccinia grandis L. (Family: Cucurbitaceae). The aqueous extract of C. grandis (AqCG) was prepared by using ultrasonication (40 °C, 20 min, 40 kHz) followed by refluxing (2½ h). The prepared AqCG (1-5 mg/mL) encapsulated alginate nanoparticles were synthesized by ionic gelation with the addition of extracts and CaCl2. Characterization of nanoparticles was performed via encapsulation efficiency (EE%), loading capacity (LC%), particle size (PS), scanning electron microscopy (SEM), zeta potential and Fourier transform infrared (FTIR) spectroscopy analysis. The antioxidant activity of the nanoparticles was evaluated in vitro by the ferric reducing antioxidant (FRAP) assay, 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assay. One-way analysis of variance (ANOVA) followed by Tukey's posthoc test was used to analyze the data. Maximum LC% (3.07 ± 0.11) and average particle size (71 nm from SEM) were obtained for alginate nanoparticles encapsulated at 4 mg/mL extract concentration. The IC50 values for DPPH, ABTS, and FRAP were 6.49 ± 0.10 mg/mL, 0.24 ± 0.01 mg/mL, and 20.63 ± 0.28 mg Trolox equivalent/g of extract respectively for alginate nanoparticles encapsulating the AqCG. Nanoparticles have shown a significant difference in IC50 values compared to Trolox (p < 0.05). The successful encapsulation of the AqCG in the alginate matrix was evidenced by FTIR and SEM analysis. Encapsulation contributed to enhancing the antioxidant activity in terms of ABTS assay when compared to the AqCG. However, in vitro release and stability studies are warranted to facilitate the development of a commercially viable nanonutraceutical using alginate nanoparticles encapsulating the AqCG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA