Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Int Soc Sports Nutr ; 21(1): 2341903, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38626029

RESUMEN

Protein supplementation often refers to increasing the intake of this particular macronutrient through dietary supplements in the form of powders, ready-to-drink shakes, and bars. The primary purpose of protein supplementation is to augment dietary protein intake, aiding individuals in meeting their protein requirements, especially when it may be challenging to do so through regular food (i.e. chicken, beef, fish, pork, etc.) sources alone. A large body of evidence shows that protein has an important role in exercising and sedentary individuals. A PubMed search of "protein and exercise performance" reveals thousands of publications. Despite the considerable volume of evidence, it is somewhat surprising that several persistent questions and misconceptions about protein exist. The following are addressed: 1) Is protein harmful to your kidneys? 2) Does consuming "excess" protein increase fat mass? 3) Can dietary protein have a harmful effect on bone health? 4) Can vegans and vegetarians consume enough protein to support training adaptations? 5) Is cheese or peanut butter a good protein source? 6) Does consuming meat (i.e., animal protein) cause unfavorable health outcomes? 7) Do you need protein if you are not physically active? 8) Do you need to consume protein ≤ 1 hour following resistance training sessions to create an anabolic environment in skeletal muscle? 9) Do endurance athletes need additional protein? 10) Does one need protein supplements to meet the daily requirements of exercise-trained individuals? 11) Is there a limit to how much protein one can consume in a single meal? To address these questions, we have conducted a thorough scientific assessment of the literature concerning protein supplementation.


Asunto(s)
Proteínas en la Dieta , Resistencia Física , Humanos , Resistencia Física/fisiología , Ejercicio Físico/fisiología , Suplementos Dietéticos , Músculo Esquelético/fisiología
2.
J Int Soc Sports Nutr ; 21(1): 2323919, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38466174

RESUMEN

Caffeine is a popular ergogenic aid that has a plethora of evidence highlighting its positive effects. A Google Scholar search using the keywords "caffeine" and "exercise" yields over 200,000 results, emphasizing the extensive research on this topic. However, despite the vast amount of available data, it is intriguing that uncertainties persist regarding the effectiveness and safety of caffeine. These include but are not limited to: 1. Does caffeine dehydrate you at rest? 2. Does caffeine dehydrate you during exercise? 3. Does caffeine promote the loss of body fat? 4. Does habitual caffeine consumption influence the performance response to acute caffeine supplementation? 5. Does caffeine affect upper vs. lower body performance/strength differently? 6. Is there a relationship between caffeine and depression? 7. Can too much caffeine kill you? 8. Are there sex differences regarding caffeine's effects? 9. Does caffeine work for everyone? 10. Does caffeine cause heart problems? 11. Does caffeine promote the loss of bone mineral? 12. Should pregnant women avoid caffeine? 13. Is caffeine addictive? 14. Does waiting 1.5-2.0 hours after waking to consume caffeine help you avoid the afternoon "crash?" To answer these questions, we performed an evidence-based scientific evaluation of the literature regarding caffeine supplementation.


Asunto(s)
Cafeína , Sustancias para Mejorar el Rendimiento , Masculino , Embarazo , Humanos , Femenino , Cafeína/farmacología , Tejido Adiposo , Ejercicio Físico , Sustancias para Mejorar el Rendimiento/farmacología , Suplementos Dietéticos
3.
J Int Soc Sports Nutr ; 20(1): 2263409, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37800468

RESUMEN

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs' effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation - with and without the benefits of exercise - on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5-3.0 g) and seems to plateau at around 15-18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as "anabolic resistance." 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it's essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle.


Asunto(s)
Aminoácidos , Músculo Esquelético , Humanos , Leucina , Aminoácidos/farmacología , Proteínas Musculares/metabolismo , Suplementos Dietéticos
4.
J Int Soc Sports Nutr ; 20(1): 2224751, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37331983

RESUMEN

INTRODUCTION: High-intensity exercise (HIE) can damage the musculotendon complex and impact the immune response, resulting in post-exercise inflammation. Sufficient rest and recovery will improve muscular resilience against future damaging bouts; however, HIE with minimal durations of rest is common in athletic competitions that facilitate persistent inflammation and immune dysregulation. Fucoidans are fucose-rich sulfated polysaccharides with demonstrated anti-inflammatory and pro-immune responses. Fucoidans may improve inflammation and immune responses, which may prove beneficial for individuals who regularly engage in repeated HIE. The research purpose was to investigate the safety and efficacy of fucoidans on inflammatory and immune markers following HIE. METHODS: Eight male and eight female participants were randomized into a double-blind, placebo-controlled, counterbalanced, crossover design study and supplemented with 1 g/day fucoidan from Undaria pinnatifida (UPF) or placebo (PL) for 2 weeks. Supplementation periods concluded with HIE testing, followed by 1 week of washout. HIE involved one > 30 s Wingate anaerobic test (WAnT) and eight 10 s WAnT intervals. Blood was drawn pre-exercise, immediately post-exercise, 30 min, and 60 min post-exercise to assess immune and inflammatory markers. Blood markers, peak power (PP), and mean power (MP) were analyzed using a 2 (condition) × 4 (time) design. Significance was set at α = .05. RESULTS: A time-by-condition interaction was observed for interleukin-6 (p = .01) and interleukin-10 (p = .008). Post hoc analysis revealed greater interleukin-6 and interleukin-10 concentrations at 30 min post HIE with UPF supplementation (p = .002 and p = .005, respectively). No effects of condition were observed for all blood markers or performance outcomes with UPF supplementation (p > .05). Main effects of time were observed for white blood cells, red blood cells, red cell distribution width, mean platelet volume, neutrophils, lymphocytes, monocytes, eosinophils, basophils, natural killer cells, B and T-lymphocytes, CD4 and CD8 cells (p < .05). DISCUSSION: No adverse events were reported throughout the study period, indicating a positive safety profile of UPF. While notable changes in biomarkers occurred up to 1 hr post HIE, few differences were observed between supplementation conditions. There did appear to be a modest effect of UPF on inflammatory cytokines potentially warranting further investigation. However, fucoidan supplementation did not influence exercise performance.


Asunto(s)
Interleucina-10 , Interleucina-6 , Humanos , Masculino , Femenino , Polisacáridos , Inflamación , Suplementos Dietéticos , Método Doble Ciego
5.
J Int Soc Sports Nutr ; 20(1): 2204066, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37221858

RESUMEN

Based on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns. 2. The primary nutritional consideration for all athletes, and in particular, female athletes, should be achieving adequate energy intake to meet their energy requirements and to achieve an optimal energy availability (EA); with a focus on the timing of meals in relation to exercise to improve training adaptations, performance, and athlete health. 3. Significant sex differences and sex hormone influences on carbohydrate and lipid metabolism are apparent, therefore we recommend first ensuring athletes meet their carbohydrate needs across all phases of the menstrual cycle. Secondly, tailoring carbohydrate intake to hormonal status with an emphasis on greater carbohydrate intake and availability during the active pill weeks of oral contraceptive users and during the luteal phase of the menstrual cycle where there is a greater effect of sex hormone suppression on gluconogenesis output during exercise. 4. Based upon the limited research available, we recommend that pre-menopausal, eumenorrheic, and oral contraceptives using female athletes should aim to consume a source of high-quality protein as close to beginning and/or after completion of exercise as possible to reduce exercise-induced amino acid oxidative losses and initiate muscle protein remodeling and repair at a dose of 0.32-0.38 g·kg-1. For eumenorrheic women, ingestion during the luteal phase should aim for the upper end of the range due to the catabolic actions of progesterone and greater need for amino acids. 5. Close to the beginning and/or after completion of exercise, peri- and post-menopausal athletes should aim for a bolus of high EAA-containing (~10 g) intact protein sources or supplements to overcome anabolic resistance. 6. Daily protein intake should fall within the mid- to upper ranges of current sport nutrition guidelines (1.4-2.2 g·kg-1·day-1) for women at all stages of menstrual function (pre-, peri-, post-menopausal, and contraceptive users) with protein doses evenly distributed, every 3-4 h, across the day. Eumenorrheic athletes in the luteal phase and peri/post-menopausal athletes, regardless of sport, should aim for the upper end of the range. 7. Female sex hormones affect fluid dynamics and electrolyte handling. A greater predisposition to hyponatremia occurs in times of elevated progesterone, and in menopausal women, who are slower to excrete water. Additionally, females have less absolute and relative fluid available to lose via sweating than males, making the physiological consequences of fluid loss more severe, particularly in the luteal phase. 8. Evidence for sex-specific supplementation is lacking due to the paucity of female-specific research and any differential effects in females. Caffeine, iron, and creatine have the most evidence for use in females. Both iron and creatine are highly efficacious for female athletes. Creatine supplementation of 3 to 5 g per day is recommended for the mechanistic support of creatine supplementation with regard to muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, glycogen and calcium regulation, oxidative stress, and inflammation. Post-menopausal females benefit from bone health, mental health, and skeletal muscle size and function when consuming higher doses of creatine (0.3 g·kg-1·d-1). 9. To foster and promote high-quality research investigations involving female athletes, researchers are first encouraged to stop excluding females unless the primary endpoints are directly influenced by sex-specific mechanisms. In all investigative scenarios, researchers across the globe are encouraged to inquire and report upon more detailed information surrounding the athlete's hormonal status, including menstrual status (days since menses, length of period, duration of cycle, etc.) and/or hormonal contraceptive details and/or menopausal status.


Asunto(s)
Creatina , Deportes , Femenino , Humanos , Masculino , Progesterona , Atletas , Aminoácidos
6.
J Int Soc Sports Nutr ; 19(1): 543-564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016763

RESUMEN

Background: Tactical athletes require fast reaction times (RT) along with high levels of vigilance and marksmanship performance. Caffeine has been shown to improve these measures but also results in increased blood pressure and jitteriness. Research on other purine alkaloids, such as methylliberine and theacrine, has suggested they do not increase blood pressure or jitteriness to the same extent, but their impact on tactical performance is unknown. Methods: A between-subjects, randomized, placebo-controlled design was used to test the effects of placebo (PLA), 300 mg caffeine (CAF), and a combination of 150 mg caffeine, 100 mg methylliberine, and 50 mg theacrine (CMT) on RT and marksmanship along with hemodynamic and arousal measures following a sustained vigilance task in tactical personnel (n = 48). Following consumption of the supplement, participants underwent a 150-min protocol consisting of two rounds. Each round began with leisurely reading followed by a 30-min vigilance task before beginning two trials of movement and marksmanship tasks. Hemodynamics and felt arousal were assessed throughout the protocol. Composite Z-scores were calculated for overall performance measures at each timepoint, and mixed-effects models were used to assess differences in RT, accuracy, and composite Z-scores along with hemodynamics and felt arousal. An α-level of 0.05 was used to determine statistical significance, and Cohen's d was used to quantify effect sizes. Results: A Group-by-Time interaction for vigilance RT (P = 0.038) indicated improvements for both CAF and CMT from round 1 to round 2 (P < 0.01) while PLA did not change (P = 0.27). No Group main effects or Group-by-Time interactions were found for movement or marksmanship performance (P > 0.20). Group main effects for systolic (SBP; P = 0.001) and diastolic blood pressure (DBP; P = 0.028) indicated higher SBP in CAF (P = 0.003, d= 0.84) and CMT (P = 0.007, d= 0.79) compared to PLA but only higher DBP in CAF (P = 0.025, d= 0.74). No Group-by-Time interaction or Group main effect was found for felt arousal (P > 0.16). Conclusions: These findings suggest similar benefits on RT during a vigilance task between CAF, containing 300 mg caffeine, and CMT above PLA, though CAF resulted in slightly less favorable hemodynamic changes. This study is the first to provide data showing similar efficacy of combined caffeine, methylliberine, and theacrine compared to double the caffeine dose consumed alone on vigilance RT but without a significant rise in DBP above PLA in tactical personnel.


Asunto(s)
Rendimiento Atlético , Cafeína , Alcaloides , Rendimiento Atlético/fisiología , Cafeína/farmacología , Método Doble Ciego , Frecuencia Cardíaca , Humanos , Poliésteres/farmacología , Purinas , Ácido Úrico/análogos & derivados
7.
J Strength Cond Res ; 33(10): 2622-2628, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31403576

RESUMEN

Walker, AJ, McFadden, BA, Sanders, DJ, Rabideau, MM, Hofacker, ML, and Arent, SM. Biomarker response to a competitive season in Division I female soccer players. J Strength Cond Res 33(10): 2622-2628, 2019-The purpose of this study was to evaluate effects of training load (TL) on performance and biomarkers of health, performance, and recovery in Division I female soccer players throughout a competitive season. Subjects (N = 25, Mage = 20 ± 1.1 years) were monitored before the start of preseason and every 4-weeks thereafter (T1-T5). A battery of performance tests was administered before the start of preseason (P1) and end-of-season (P2), including body composition (percent body fat [%BF], fat free mass [FFM], and fat mass), vertical jump (VJ), and VO2max. Blood draws were conducted at every time point (T1-T5) to assess free and total cortisol (CORTF and CORTT), prolactin (PRL), T3, IL-6, creatine kinase (CK), sex-hormone binding globulin, omega-3 (n-3FA), vitamin-D (Vit-D), iron (Fe), hematocrit (HcT), ferritin (Fer), percent saturation (%Sat), and total iron-binding capacity (TIBC). Daily exercise energy expenditure (EEE) and TL were determined. There were significant declines in VO2max, VJ, weight, and %BF from P1-P2 (p < 0.05) with no significant differences in FFM. Training load and EEE significantly decreased from T1-T3 (p < 0.05). Significant increases were seen in CORTT, CORTF, PRL, T3, IL-6, CK, and TIBC throughout the season (p < 0.05). Significant decreases were seen in n-3FA, Fe, Fer, %Sat, and Hct throughout the season (p < 0.05). Female athletes experience significant physiological changes following high TL and EEE associated with preseason and appear to be further exacerbated by the cumulative effects of the season. Unique insights provided by biomarkers enable athletes and coaches to be cognizant of the physiological changes that are occurring throughout the season.


Asunto(s)
Rendimiento Atlético/fisiología , Ejercicio Físico/fisiología , Esfuerzo Físico/fisiología , Fútbol/fisiología , Adolescente , Biomarcadores/sangre , Composición Corporal , Peso Corporal , Creatina Quinasa/sangre , Prueba de Esfuerzo , Ácidos Grasos Omega-3/sangre , Femenino , Ferritinas/sangre , Hematócrito , Humanos , Hidrocortisona/sangre , Interleucina-6/sangre , Hierro/sangre , Oxígeno/sangre , Consumo de Oxígeno , Acondicionamiento Físico Humano/fisiología , Prolactina/sangre , Globulina de Unión a Hormona Sexual/metabolismo , Triyodotironina/sangre , Vitamina D/sangre , Adulto Joven
8.
J Int Soc Sports Nutr ; 16(1): 20, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999897

RESUMEN

BACKGROUND: Theacrine (1,3,7,9-tetramethyluric-acid) is a pure alkaloid with a similar structure to caffeine and acts comparably as an adenosine receptor antagonist. Early studies have shown non-habituating effects, including increases in energy and focus in response to Teacrine®, the compound containing pure theacrine. The purpose of this study was to determine and compare the effects of Teacrine® and caffeine on cognitive performance and time-to-exhaustion during a simulated soccer game in high-level male and female athletes. METHODS: Male and female soccer players (N = 24; MAge = 20.96 ± 2.05y, MMaleVO2max = 55.31 ± 3.39 mL/O2/kg, MFemaleVO2max = 50.97 ± 3.90 mL/O2/kg) completed a 90-min simulated treadmill soccer match over four randomized sessions (TeaCrine®, caffeine, TeaCrine® + caffeine, placebo). Cognitive testing at halftime and end-of-game including simple reaction time (SRT), choice RT (CRT), and cognitive-load RT with distraction questions (COGRT/COGRTWrong) was performed, with a run time-to-exhaustion (TTE) at 85% VO2max following end-of-game cognitive testing. Session times and pre-exercise nutrition were controlled. RM-MANOVAs with univariate follow-ups were conducted and significance was set at P < 0.05. RESULTS: TTE trended towards significance in TeaCrine® and TeaCrine® + caffeine conditions compared to placebo (P < 0.052). A condition main effect (P < 0.05) occurred with faster CRT in caffeine and TeaCrine® + caffeine compared to placebo. COGRTWrong showed a significant time main effect, with better accuracy at end-of-game compared to halftime (P < 0.05). A time x condition interaction in SRT (P < 0.05) showed placebo improved from halftime to end-of-game. CONCLUSIONS: The 27-38% improvements in TTE reflect increased performance capacity that may have important implications for overtime scenarios. These findings suggest TeaCrine® favorably impacts endurance and the combination with caffeine provides greater benefits on cognitive function than either supplement independently.


Asunto(s)
Cafeína/farmacología , Cognición/efectos de los fármacos , Suplementos Dietéticos , Fútbol , Ácido Úrico/análogos & derivados , Adolescente , Rendimiento Atlético , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Consumo de Oxígeno , Tiempo de Reacción , Ácido Úrico/farmacología , Adulto Joven
9.
J Am Coll Nutr ; 37(2): 111-120, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29111889

RESUMEN

BACKGROUND: Very few weight and fat loss supplements undergo finished-product research to examine efficacy. The purpose of this study was to determine the effects of an 8-week diet and exercise program on body composition, hip and waist girth, and adipokines and evaluate whether a dietary supplement containing raspberry ketone, capsaicin, caffeine, garlic, and Citrus aurantium enhanced outcomes. METHODS: Overweight men and women completed this randomized, placebo-controlled, double-blind study. Participants consumed 4 capsules/d of supplement (EXP; n = 18) or placebo (PLA; n = 18). Participants underwent 8 weeks of daily supplementation, calorie restriction (500 kcal < RMR [resting metabolic rate] × 1.2), and supervised progressive exercise training 3 times a week. Body composition, girth, and adipokines were assessed at baseline and postintervention (T1 and T2). RESULTS: Significant decreases in weight (-2.6 ± 0.57 kg, p < 0.001), fat mass (-1.8 ± 0.20 kg; p < 0.001), and percentage body fat (-3.7% ± 0.29%, p < 0.001) and a significant increase in lean body mass (LBM; 1.5 ± 0.26 kg; p < 0.001) were seen from T1 to T2 in both groups. For men, only those in the EXP group increased LBM from T1 to T2 (1.3 ± 0.38 kg; p < 0.05). Hip girth was also reduced, with the women in the EXP group (-10.7 ± 2.15 cm, p < 0.001) having a greater reduction. There was a time by group interaction, with significant decreases in leptin (p < 0.001) and significant increases in adiponectin (p < 0.05) in the EXP group. CONCLUSIONS: Significant improvements in adipokines and leptin support the utility of exercise, diet, and fat loss for impacting inflammatory biomarkers. The improvement in adiponectin with EXP may suggest a unique health mechanism.


Asunto(s)
Adipoquinas/sangre , Composición Corporal , Dieta , Suplementos Dietéticos , Ejercicio Físico , Sobrepeso/terapia , Adulto , Cafeína/administración & dosificación , Restricción Calórica , Capsaicina/administración & dosificación , Citrus , Suplementos Dietéticos/análisis , Método Doble Ciego , Femenino , Ajo , Cadera/anatomía & histología , Humanos , Cetonas/administración & dosificación , Leptina/sangre , Masculino , Persona de Mediana Edad , Placebos , Rubus/química , Factores Sexuales , Circunferencia de la Cintura , Pérdida de Peso
11.
J Strength Cond Res ; 24(4): 1117-24, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20300015

RESUMEN

The purpose of this study was to examine changes in performance and metabolic parameters in collegiate soccer players during preseason preparation and to determine the impact of a nutraceutical blend proposed to reduce oxidative stress. Male Division I college soccer players (n = 22) performed a progressive maximal treadmill test at the beginning and end of preseason to assess changes in Vo2max, velocity at lactate threshold (VLT), time-to-exhaustion, lipid hydroperoxide (LPO), 8-isoprostane, and creatine kinase (CK) response. After baseline testing, athletes were randomly assigned to receive the nutraceutical blend (EXP; n = 12) or an isocaloric equivalent (CON; n = 10) for 20 days of preseason training. DeltaVo2max (2.1 +/- 3.3 ml.kg.min, p = 0.007), DeltaVLT (0.8 +/- 1.4 km.h, p = 0.045), and Deltatime-to-exhaustion (39.4 +/- 77.4 seconds, p = 0.033) were improved across groups, but a significant effect of supplementation on performance was not seen. Changes in resting levels of CK from the beginning to end of preseason were significantly lower (p = 0.044) in EXP (64.8 +/- 188.4 U.L) than in CON (292.8 +/- 304.8 U.L). Additionally, EXP demonstrated a significant decrease in the magnitude of the 8-isoprostane response at Trial 2 compared with Trial 1 (effect size [ES] = -0.74), whereas CON had an increased response (ES = 0.20). A similar pattern was seen for LPO (p = 0.067). Preseason training in male college soccer players resulted in significant improvements in Vo2max, VLT, and time-to-exhaustion. Supplementing with a proprietary antioxidant and nutraceutical blend may enhance some of these effects as indicated by magnitude of the responses. However, it appears that the most notable effects of supplementation were seen for reduced CK and oxidative stress, at least with short-term supplementation.


Asunto(s)
Rendimiento Atlético/fisiología , Suplementos Dietéticos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Fútbol/fisiología , Antioxidantes/análisis , Antioxidantes/metabolismo , Atletas , Biomarcadores/sangre , Creatina Quinasa/análisis , Creatina Quinasa/metabolismo , Dinoprost/análogos & derivados , Dinoprost/análisis , Dinoprost/metabolismo , Prueba de Esfuerzo/métodos , Humanos , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Masculino , Análisis Multivariante , Fuerza Muscular/fisiología , Resistencia Física/fisiología , Probabilidad , Especies Reactivas de Oxígeno/análisis , Valores de Referencia , Método Simple Ciego , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA