Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ISME J ; 17(2): 263-275, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36357782

RESUMEN

Bacillus velezensis is considered as model species for plant-associated bacilli providing benefits to its host such as protection against phytopathogens. This is mainly due to the potential to secrete a wide range of secondary metabolites with specific and complementary bioactivities. This metabolite arsenal has been quite well defined genetically and chemically but much remains to be explored regarding how it is expressed under natural conditions and notably how it can be modulated upon interspecies interactions in the competitive rhizosphere niche. Here, we show that B. velezensis can mobilize a substantial part of its metabolome upon the perception of Pseudomonas, as a soil-dwelling competitor. This metabolite response reflects a multimodal defensive strategy as it includes polyketides and the bacteriocin amylocyclicin, with broad antibiotic activity, as well as surfactin lipopeptides, contributing to biofilm formation and enhanced motility. Furthermore, we identified the secondary Pseudomonas siderophore pyochelin as an info-chemical, which triggers this response via a mechanism independent of iron stress. We hypothesize that B. velezensis relies on such chelator sensing to accurately identify competitors, illustrating a new facet of siderophore-mediated interactions beyond the concept of competition for iron and siderophore piracy. This phenomenon may thus represent a new component of the microbial conversations driving the behavior of members of the rhizosphere community.


Asunto(s)
Bacillus , Pseudomonas , Sideróforos/metabolismo , Bacillus/metabolismo , Hierro/metabolismo , Percepción
2.
mBio ; 12(6): e0177421, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34724831

RESUMEN

Bacillus velezensis is considered as a model species belonging to the so-called Bacillus subtilis complex that evolved typically to dwell in the soil rhizosphere niche and establish an intimate association with plant roots. This bacterium provides protection to its natural host against diseases and represents one of the most promising biocontrol agents. However, the molecular basis of the cross talk that this bacterium establishes with its natural host has been poorly investigated. We show here that these plant-associated bacteria have evolved a polymer-sensing system to perceive their host and that, in response, they increase the production of the surfactin-type lipopeptide. Furthermore, we demonstrate that surfactin synthesis is favored upon growth on root exudates and that this lipopeptide is a key component used by the bacterium to optimize biofilm formation, motility, and early root colonization. In this specific nutritional context, the bacterium also modulates qualitatively the pattern of surfactin homologues coproduced in planta and forms mainly variants that are the most active at triggering plant immunity. Surfactin represents a shared good as it reinforces the defensive capacity of the host. IMPORTANCE Within the plant-associated microbiome, some bacterial species are of particular interest due to the disease protective effect they provide via direct pathogen suppression and/or stimulation of host immunity. While these biocontrol mechanisms are quite well characterized, we still poorly understand the molecular basis of the cross talk these beneficial bacteria initiate with their host. Here, we show that the model species Bacillus velezensis stimulates the production of the surfactin lipopeptide upon sensing pectin as a cell surface molecular pattern and upon feeding on root exudates. Surfactin favors bacterial rhizosphere fitness on one hand and primes the plant immune system on the other hand. Our data therefore illustrate how both partners use this multifunctional compound as a unique shared good to sustain a mutualistic interaction.


Asunto(s)
Bacillus/metabolismo , Lipopéptidos/metabolismo , Pectinas/metabolismo , Exudados de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis , Bacillus/genética , Interacciones Microbiota-Huesped , Rizosfera , Microbiología del Suelo
3.
Biotechnol J ; 14(8): e1800624, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31161690

RESUMEN

The fungal endophyte Cyanodermella asteris (C. asteris) has been recently isolated from the medicinal plant Aster tataricus (A. tataricus). This fungus produces astin C, a cyclic pentapeptide with anticancer and anti-inflammatory properties. The production of this secondary metabolite is compared in immobilized and planktonic conditions. For immobilized cultures, a stainless steel packing immersed in the culture broth is used as a support. In these conditions, the fungus exclusively grows on the packing, which provides a considerable advantage for astin C recovery and purification. C. asteris metabolism is different according to the culture conditions in terms of substrate consumption rate, cell growth, and astin C production. Immobilized-cell cultures yield a 30% increase of astin C production, associated with a 39% increase in biomass. The inoculum type as spores rather than hyphae, and a pre-inoculation washing procedure with sodium hydroxide, turns out to be beneficial both for astin C production and fungus development onto the support. Finally, the influence of culture parameters such as pH and medium composition on astin C production is evaluated. With optimized culture conditions, astin C yield is further improved reaching a five times higher final specific yield compared to the value reported with astin C extraction from A. tataricus (0.89 mg g-1 and 0.16 mg g-1 respectively).


Asunto(s)
Ascomicetos/metabolismo , Medios de Cultivo/química , Microbiología Industrial/métodos , Péptidos Cíclicos/biosíntesis , Ascomicetos/citología , Ascomicetos/crecimiento & desarrollo , Reactores Biológicos , Células Inmovilizadas , Endófitos/metabolismo , Microbiología Industrial/instrumentación , Plancton , Acero Inoxidable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA