Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Pollut Bull ; 151: 110892, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32056658

RESUMEN

The application of chemical dispersants is one option of oil spill response (OSR). Here, Northern shrimp (Pandalus borealis) larvae were experimentally exposed for short periods (6 h and 1 h) to a realistic concentration of chemically dispersed oil (CDO) (~10 mg L-1 THC), mechanically dispersed oil (MDO) (~7 mg L-1 THC), and dispersant only (D). A control (C) with seawater served as reference. Short-term effects on survival and feeding were examined right after exposure and longer-term consequences on survival, feeding, growth and development following 30 days of recovery. Both exposure durations provoked long lasting effects on larval fitness, with 1 h exposure leading to minor effects on most of the selected endpoints. The 6 h exposure affected all endpoints with more adverse impacts after exposure to CDO. This study provides important data for assessing the best OSR option relevant to NEBA (Net Environmental Benefit Analysis).


Asunto(s)
Pandalidae , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Larva
2.
Mar Pollut Bull ; 145: 409-417, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31590804

RESUMEN

Knowledge of key species sensitivity for oil spill response (OSR) options is needed to support decision-making and mitigate impact on sensitive life stages of keystone species. Here, Northern shrimp (Pandalus borealis) larvae were exposed for 24 h to a gradient (H-High, M-Medium: 10 times dilution and L-Low: 100 times dilution) of mechanically- (MDO) (H < 6 mg/L total hydrocarbon content) and chemically- (CDO) dispersed oil (Slickgone NS, H < 20 mg/L total hydrocarbon content), followed by a recovery period. Larval mortality, feeding rate and development were evaluated. Overall, the results show that 24 h exposure to field-realistic concentrations of CDO lead to lower survival, reduced feeding rate and slower larval development in P. borealis larvae compared to MDO. These effects persisted during recovery, indicating a higher vulnerability with dispersant use and the need for longer observation periods post-exposure to fully evaluate the consequences for sensitive life-stages from OSR.


Asunto(s)
Pandalidae/efectos de los fármacos , Contaminación por Petróleo , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Pandalidae/crecimiento & desarrollo , Contaminantes Químicos del Agua/química
3.
Sci Rep ; 8(1): 17380, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478380

RESUMEN

Ocean warming (OW) and acidification (OA) are key features of global change and are predicted to have negative consequences for marine species and ecosystems. At a smaller scale increasing oil and gas activities at northern high latitudes could lead to greater risk of petroleum pollution, potentially exacerbating the effects of such global stressors. However, knowledge of combined effects is limited. This study employed a scenario-based, collapsed design to investigate the impact of one local acute stressor (North Sea crude oil) and two chronic global drivers (pH for OA and temperature for OW), alone or in combination on aspects of the biology of larval stages of two key invertebrates: the northern shrimp (Pandalus borealis) and the green sea urchin (Strongylocentrotus droebachiensis). Both local and global drivers had negative effects on survival, development and growth of the larval stages. These effects were species- and stage-dependent. No statistical interactions were observed between local and global drivers and the combined effects of the two drivers were approximately equal to the sum of their separate effects. This study highlights the importance of adjusting regulation associated with oil spill prevention to maximize the resilience of marine organisms to predicted future global conditions.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Calentamiento Global/prevención & control , Invertebrados/crecimiento & desarrollo , Contaminación por Petróleo/efectos adversos , Animales , Cambio Climático , Ecosistema , Concentración de Iones de Hidrógeno , Larva/crecimiento & desarrollo , Petróleo , Agua de Mar
4.
J Toxicol Environ Health A ; 80(16-18): 916-931, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849995

RESUMEN

Rising oil and gas activities in northern high latitudes have led to an increased risk of petroleum pollution in these ecosystems. Further, seasonal high UV radiation at high latitudes may elevate photo-enhanced toxicity of petroleum pollution to marine organisms. Zooplanktons are a key ecological component of northern ecosystems; therefore, it is important to assess their sensitivity to potential pollutants of oil and gas activity. As ontogenetic development may be particularly sensitive, the aim of this study was to examine the impact of chronic exposure to oil water dispersion (OWD) on development and feeding of early life stages of the Northern krill, Meganyctiphanes norvegica. In a range of experiments, embryonic, nonfeeding, and feeding larval stages were exposed to concentrations of between 0.01 and 0.1 mg/L of oil or photo-modified oil for 19 and 21 d. No significant effects on egg respiration, hatching success, development, length and larval survival were observed from these treatments. Similarly, evolution of fatty acid composition patterns during ontogenetic development was unaffected. The results indicates a high degree of resilience of these early developmental stages to such types and concentrations of pollutants. However, feeding and motility in later calyptopis-stage larvae were significantly impaired at exposure of 0.1 mg/L oil. Data indicate that feeding larval stage of krill was more sensitive to OWD than early nonfeeding life stages. This might be attributed to the narcotic effects of oil pollutants, their direct ingestion, or accumulated adverse effects over early development.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Euphausiacea/efectos de los fármacos , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Euphausiacea/crecimiento & desarrollo , Ácidos Grasos/análisis , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Modelos Lineales , Análisis Multivariante , Contaminación por Petróleo/efectos adversos , Hidrocarburos Policíclicos Aromáticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA