Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sports Med ; 52(3): 505-526, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34687438

RESUMEN

BACKGROUND: Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect. OBJECTIVE: To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach. METHODS: This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses. RESULTS: 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L-1 (95% credible interval (CrI) 4.7-5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12-0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5-10 min [ES0.5 = 0.18 (0.13-0.24)] and > 10 min [ES0.5 = 0.22 (0.10-0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4-6 mmol L-1) and large (> 6 mmol L-1) compared with small (≤ 4 mmol L-1) [ßSmall:Medium = 0.16 (95% CrI 0.02-0.32), ßSmall:Large = 0.13 (95% CrI - 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [ßSC:SB = 0.10 (95% CrI - 0.02 to 0.22)]. CONCLUSIONS: Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.


Asunto(s)
Tolerancia al Ejercicio , Sustancias para Mejorar el Rendimiento , Teorema de Bayes , Suplementos Dietéticos , Humanos , Sustancias para Mejorar el Rendimiento/farmacología , Bicarbonato de Sodio/farmacología
2.
Adv Nutr ; 12(6): 2216-2231, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333586

RESUMEN

There is growing evidence that supplementation with carnosine, or its rate-limiting precursor ß-alanine, can ameliorate aspects of metabolic dysregulation that occur in diabetes and its related conditions. The purpose of this systematic review and meta-analysis was to evaluate the effect of carnosine or ß-alanine supplementation on markers of glycemic control and insulin resistance in humans and animals. We performed a systematic search of 6 electronic databases up to 31 December 2020. Primary outcomes were changes in 1) fasting glucose, 2) glycated hemoglobin (HbA1c), and 3) 2-h glucose following a glucose-tolerance test. A set of additional outcomes included fasting insulin and homeostatic model assessment of ß-cell function (HOMA-ß) and insulin resistance (HOMA-IR). We assessed risk of bias using the Cochrane risk of bias (RoB) 2.0 (human studies) and the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) RoB (animal studies) tools; and used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess certainty. We used Bayesian hierarchical random-effects models, with informative priors for human data and noninformative priors for animal data. Inferences were made on posterior samples generated by Hamiltonian Markov Chain Monte Carlo using 90% credible intervals (90% CrI) and calculated probabilities. Twenty studies (n = 4 human, n = 16 rodent) were included, providing data for 2 primary outcomes (fasting glucose and HbA1c) and 3 additional outcomes (fasting insulin, HOMA-ß, and HOMA-IR). The model provides evidence that supplementation decreases fasting glucose [humans: mean difference (MD)0.5 = -0.95 mmol · L-1 (90% CrI: -2.1, 0.08); rodent: MD0.5 = -2.26 mmol · L-1 (90% CrI: -4.03, -0.44)], HbA1c [humans: MD0.5 = -0.91% (90% CrI: -1.46, -0.39); rodents: MD0.5 = -1.05% (90% CrI: -1.64, -0.52)], HOMA-IR [humans: standardized mean difference (SMD)0.5 = -0.41 (90% CrI: -0.82, -0.07); rodents: SMD0.5 = -0.63 (90% CrI: -1.98, 0.65)], and fasting insulin [humans: SMD0.5 = -0.41 (90% CrI: -0.77, -0.07)]. GRADE assessment showed our certainty in the effect estimate of each outcome to be moderate (human outcomes) or very low (rodent outcomes). Supplementation with carnosine or ß-alanine may reduce fasting glucose, HbA1c, and HOMA-IR in humans and rodents, and fasting insulin in humans; both compounds show potential as therapeutics to improve glycemic control and insulin resistance. This review was registered at PROSPERO as CRD42020191588.


Asunto(s)
Carnosina , Suplementos Dietéticos , Control Glucémico , Resistencia a la Insulina , beta-Alanina , Animales , Teorema de Bayes , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Insulina
3.
Sports Med ; 51(6): 1317-1330, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33599941

RESUMEN

BACKGROUND: Acute protein turnover studies suggest lower anabolic response after ingestion of plant vs. animal proteins. However, the effects of an exclusively plant-based protein diet on resistance training-induced adaptations are under investigation. OBJECTIVE: To investigate the effects of dietary protein source [exclusively plant-based vs. mixed diet] on changes in muscle mass and strength in healthy young men undertaking resistance training. METHODS: Nineteen young men who were habitual vegans (VEG 26 ± 5 years; 72.7 ± 7.1 kg, 22.9 ± 2.3 kg/m2) and nineteen young men who were omnivores (OMN 26 ± 4 years; 73.3 ± 7.8 kg, 23.6 ± 2.3 kg/m2) undertook a 12-week, twice weekly, supervised resistance training program. Habitual protein intake was assessed at baseline and adjusted to 1.6 g kg-1 day-1 via supplemental protein (soy for VEG or whey for OMN). Dietary intake was monitored every four weeks during the intervention. Leg lean mass, whole muscle, and muscle fiber cross-sectional area (CSA), as well as leg-press 1RM were assessed before (PRE) and after the intervention (POST). RESULTS: Both groups showed significant (all p < 0.05) PRE-to-POST increases in leg lean mass (VEG: 1.2 ± 1.0 kg; OMN: 1.2 ± 0.8 kg), rectus femoris CSA (VEG: 1.0 ± 0.6 cm2; OMN: 0.9 ± 0.5 cm2), vastus lateralis CSA (VEG: 2.2 ± 1.1 cm2; OMN: 2.8 ± 1.0 cm2), vastus lateralis muscle fiber type I (VEG: 741 ± 323 µm2; OMN: 677 ± 617 µm2) and type II CSA (VEG: 921 ± 458 µm2; OMN: 844 ± 638 µm2), and leg-press 1RM (VEG: 97 ± 38 kg; OMN: 117 ± 35 kg), with no between-group differences for any of the variables (all p > 0.05). CONCLUSION: A high-protein (~ 1.6 g kg-1 day-1), exclusively plant-based diet (plant-based whole foods + soy protein isolate supplementation) is not different than a protein-matched mixed diet (mixed whole foods + whey protein supplementation) in supporting muscle strength and mass accrual, suggesting that protein source does not affect resistance training-induced adaptations in untrained young men consuming adequate amounts of protein. CLINICAL TRIAL REGISTRATION: NCT03907059. April 8, 2019. Retrospectively registered.


Asunto(s)
Entrenamiento de Fuerza , Animales , Dieta , Dieta Vegetariana , Suplementos Dietéticos , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético , Veganos
4.
Syst Rev ; 9(1): 282, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33278906

RESUMEN

BACKGROUND: Diabetes is a major public health issue and there is a need to develop low-cost, novel interventions to prevent or reduce disease progression. Growing evidence shows that supplementation with carnosine, or its rate-limiting precursor ß-alanine, can ameliorate aspects of the metabolic dysregulation that occurs in diabetes. There is, however, a need to develop a better understanding of the magnitude of effect and the factors associated with positive outcomes. The purpose of this systematic review and meta-analysis is to evaluate the effect of carnosine or ß-alanine supplementation on markers of glycaemic control and insulin resistance in humans and animals. METHODS: We will perform a systematic search for randomised and non-randomised controlled trials. Studies will be retrieved by searching electronic databases, clinical trial registers, author review, and cross-referencing. Primary outcomes include changes in (i) fasting glucose, (ii) glycated haemoglobin, and (iii) 2-h glucose following a glucose tolerance test. A set of additional outcomes includes other markers of glycaemic control and insulin resistance. Risk of bias (RoB) will be assessed using the Cochrane RoB 2.0 tool (human studies) and the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) RoB tool (animal studies). Confidence in the cumulative evidence will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. All meta-analyses will be conducted within a Bayesian framework, providing a flexible modelling approach to account for uncertainty in model parameters and underlying structures within the data. DISCUSSION: By including all available human and animal data, we will provide the most comprehensive overview on the topic to date. The results will have implications for those working in prediabetes, diabetes, and metabolic health in general and may lead to the development of new treatment approaches. DISSEMINATION: Study results will be presented at a professional conference and published in a peer-reviewed journal. SYSTEMATIC REVIEW REGISTRATION: CRD42020191588.


Asunto(s)
Carnosina , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Teorema de Bayes , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Control Glucémico , Humanos , Metaanálisis como Asunto , Revisiones Sistemáticas como Asunto , beta-Alanina
5.
Biomolecules ; 9(11)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652853

RESUMEN

Sarcopenia is characterized by a loss of muscle mass, quality, and function, and negatively impacts health, functionality, and quality of life for numerous populations, particularly older adults. Creatine is an endogenously produced metabolite, which has the theoretical potential to counteract many of the morphological and metabolic parameters underpinning sarcopenia. This can occur through a range of direct and indirect mechanisms, including temporal and spatial functions that accelerate ATP regeneration during times of high energy demand, direct anabolic and anti-catabolic functions, and enhanced muscle regenerating capacity through positively impacting muscle stem cell availability. Studies conducted in older adults show little benefit of creatine supplementation alone on muscle function or mass. In contrast, creatine supplementation as an adjunct to exercise training seems to augment the muscle adaptive response to the training stimulus, potentially through increasing capacity for higher intensity exercise, and/or by enhancing post-exercise recovery and adaptation. As such, creatine may be an effective dietary strategy to combat age-related muscle atrophy and sarcopenia when used to complement the benefits of exercise training.


Asunto(s)
Creatina/uso terapéutico , Atrofia Muscular/dietoterapia , Anciano , Envejecimiento , Animales , Suplementos Dietéticos , Ejercicio Físico , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/rehabilitación
6.
Med Sci Sports Exerc ; 51(10): 2098-2108, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083045

RESUMEN

Carnosine (ß-alanyl-L-histidine) plays an important role in exercise performance and skeletal muscle homeostasis. Dietary supplementation with the rate-limiting precursor ß-alanine leads to an increase in skeletal muscle carnosine content, which further potentiates its effects. There is significant interest in carnosine and ß-alanine across athletic and clinical populations. Traditionally, attention has been given to performance outcomes with less focus on the underlying mechanism(s). Putative physiological roles in human skeletal muscle include acting as an intracellular pH buffer, modulating energy metabolism, regulating Ca handling and myofilament sensitivity, and scavenging of reactive species. Emerging evidence shows that carnosine could also act as a cytoplasmic Ca-H exchanger and form stable conjugates with exercise-induced reactive aldehydes. The enigmatic nature of carnosine means there is still much to learn regarding its actions and applications in exercise, health, and disease. In this review, we examine the research relating to each physiological role attributed to carnosine, and its precursor ß-alanine, in exercising human skeletal muscle.


Asunto(s)
Carnosina/metabolismo , Suplementos Dietéticos , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , beta-Alanina/metabolismo , Calcio/metabolismo , Metabolismo Energético , Glucólisis , Humanos , Concentración de Iones de Hidrógeno , Células Musculares/metabolismo , Contracción Muscular/fisiología , Miofibrillas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
7.
Adv Nutr ; 10(3): 452-463, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30980076

RESUMEN

ß-Alanine supplementation is one of the world's most commonly used sports supplements, and its use as a nutritional strategy in other populations is ever-increasing, due to evidence of pleiotropic ergogenic and therapeutic benefits. Despite its widespread use, there is only limited understanding of potential adverse effects. To address this, a systematic risk assessment and meta-analysis was undertaken. Four databases were searched using keywords and Medical Subject Headings. All human and animal studies that investigated an isolated, oral, ß-alanine supplementation strategy were included. Data were extracted according to 5 main outcomes, including 1) side effects reported during longitudinal trials, 2) side effects reported during acute trials, 3) effect of supplementation on circulating health-related biomarkers, 4) effect of supplementation on skeletal muscle taurine and histidine concentration, and 5) outcomes from animal trials. Quality of evidence for outcomes was ascertained using the Grading of Recommendations Assessment Development and Evaluation (GRADE) framework, and all quantitative data were meta-analyzed using multilevel models grounded in Bayesian principles. In total, 101 human and 50 animal studies were included. Paraesthesia was the only reported side effect and had an estimated OR of 8.9 [95% credible interval (CrI): 2.2, 32.6] with supplementation relative to placebo. Participants in active treatment groups experienced similar dropout rates to those receiving the placebo treatment. ß-Alanine supplementation caused a small increase in circulating alanine aminotransferase concentration (effect size, ES: 0.274, CrI: 0.04, 0.527), although mean data remained well within clinical reference ranges. Meta-analysis of human data showed no main effect of ß-alanine supplementation on skeletal muscle taurine (ES: 0.156; 95% CrI: -0.38, 0.72) or histidine (ES: -0.15; 95% CrI: -0.64, 0.33) concentration. A main effect of ß-alanine supplementation on taurine concentration was reported for murine models, but only when the daily dose was ≥3% ß-alanine in drinking water. The results of this review indicate that ß-alanine supplementation within the doses used in the available research designs, does not adversely affect those consuming it.


Asunto(s)
Suplementos Dietéticos , beta-Alanina/administración & dosificación , Animales , Teorema de Bayes , Biomarcadores/análisis , Histidina/efectos de los fármacos , Humanos , Ratones , Músculo Esquelético/efectos de los fármacos , Medición de Riesgo , Taurina/efectos de los fármacos
8.
Int J Sport Nutr Exerc Metab ; 29(5): 505-511, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30859862

RESUMEN

This study evaluated the effects of ß-hydroxy-ß-methylbutyrate free acid (HMB-FA) and calcium salt (HMB-Ca) on strength, hypertrophy, and markers of muscle damage. In this randomized, double-blind, placebo-controlled study, 44 resistance-trained men (age: 26 ± 4 years; body mass: 84.9 ± 12.0 kg) consuming ≥1.7 g·kg-1·day-1 of protein received HMB-FA (3 g/day; n = 14), HMB-Ca (3 g/day; n = 15), or placebo (PL; cornstarch, 3 g/day; n = 15) for 12 weeks, while performing a periodized resistance training program. Before and after intervention, lean body mass (measured with dual X-ray absorptiometry), maximal dynamic strength (one-repetition maximum), knee extension maximal isometric strength (maximal voluntary isometric contraction [MVIC]), cross-sectional area (measured with ultrasound), and muscle soreness were assessed. MVIC was also measured 48 hr after the first and the last training sessions. All groups increased lean body mass (main time effect: p < .0001; HMB-FA: 1.8 ± 1.8 kg; HMB-Ca: 0.8 ± 1.4 kg; PL: 0.9 ± 1.4 kg), cross-sectional area (main time effect: p < .0001; HMB-FA: 6.6 ± 3.8%; HMB-Ca: 4.7 ± 4.4%; PL: 6.9 ± 3.8%), one-repetition maximum bench press (main time effect: p < .0001; HMB-FA: 14.8 ± 8.4 kg; HMB-Ca: 11.8 ± 7.4 kg; PL: 11.2 ± 6.6 kg), MVIC (main time effect: p < .0001; HMB-FA: 34.4 ± 39.3%; HMB-Ca: 32.3 ± 27.4%; PL: 17.7 ± 20.9%) after the intervention, but no differences between groups were shown. HMB-FA group showed greater leg press strength after the intervention than HMB-Ca and PL groups (Group × Time interaction: p < .05; HMB-FA: 47.7 ± 31.2 kg; HMB-Ca: 43.8 ± 31.7 kg; PL: 30.2 ± 20.9 kg). MVIC measured 48 hr after the first and the last sessions showed no attenuation of force decline with supplementation. Muscle soreness following the first and last sessions was not different between groups. The authors concluded that neither HMB-Ca nor HMB-FA improved hypertrophy or reduced muscle damage in resistance-trained men undergoing resistance training ingesting optimal amounts of protein. HMB-FA but not HMB-Ca resulted in a statistically significant yet minor improvement on leg press one-repetition maximum.


Asunto(s)
Calcio/administración & dosificación , Fuerza Muscular , Músculo Esquelético/crecimiento & desarrollo , Entrenamiento de Fuerza , Fenómenos Fisiológicos en la Nutrición Deportiva , Valeratos/administración & dosificación , Adulto , Composición Corporal , Método Doble Ciego , Humanos , Contracción Isométrica , Masculino , Mialgia , Adulto Joven
9.
Amino Acids ; 51(1): 27-37, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29905904

RESUMEN

ß-Alanine (BA) supplementation may be ergogenic during high-intensity exercise, primarily due to the buffering of hydrogen cations, although the effects of beta-alanine supplementation on strength endurance are equivocal. The aim of the study was to determine the effects of 4 weeks of beta-alanine supplementation on skeletal muscle endurance using a battery of performance tests. This study employed a parallel group, repeated measures, randomised, double-blinded and placebo-controlled design. Twenty recreationally strength-trained healthy males completed tests of isotonic strength endurance (repeated bench and leg press), along with tests of isometric and isokinetic endurance conducted using an isokinetic dynamometer. Tests were performed before and after a 4 week intervention, comprising an intake of 6.4 g day-1 of BA (n = 9) or placebo (maltodextrin, n = 11). Time-to-exhaustion during the isometric endurance test improved by ~ 17% in the BA group (p < 0.01), while PL remained unchanged. No significant within-group differences (p > 0.1) were shown for any of the performance variables in the isokinetic test (peak torque, fatigue index, total work) nor for the total number of repetitions performed in the isotonic endurance tests (leg or bench press). Four weeks of BA supplementation (6.4 g day-1) improved isometric, but not isokinetic or isotonic endurance performance.


Asunto(s)
Suplementos Dietéticos , Contracción Isométrica/efectos de los fármacos , Contracción Isotónica/efectos de los fármacos , Sustancias para Mejorar el Rendimiento/administración & dosificación , Resistencia Física/efectos de los fármacos , beta-Alanina/administración & dosificación , Adulto , Ejercicio Físico , Humanos , Masculino , Dinamómetro de Fuerza Muscular , Músculo Esquelético/metabolismo , Sustancias para Mejorar el Rendimiento/farmacología , Adulto Joven , beta-Alanina/farmacología
10.
Int J Sport Nutr Exerc Metab ; 29(4): 441­452, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30299200

RESUMEN

Combat sport athletes typically engage in a process called making weight, characterized by rapid weight loss (RWL) and subsequent rapid weight gain (RWG) in the days preceding competition. These practices differ across each sport, but no systematic comparison of the size of the changes in body mass exists. The aim was to determine the magnitude of RWL and RWG in combat sport athletes preparing for competition. The review protocol was preregistered with PROSPERO (CRD42017055279). In eligible studies, athletes prepared habitually with a RWL period ≤7 days preceding competition. An electronic search of EBSCOhost (CINAHL Plus, MEDLINE, and SPORTDiscus) and PubMed Central was performed up to July 2018. Sixteen full-text studies (total 4,432 participants; 156 females and 4,276 males) were included, providing data from five combat sports (boxing, judo, mixed martial arts, taekwondo, and wrestling). Three studies reported RWL and 14 studies reported RWG. Duration permitted for RWG ranged 3-32 hr. The largest changes in body mass occurred in two separate mixed martial arts cohorts (RWL: 7.4 ± 1.1 kg [∼10%] and RWG: 7.4 ± 2.8 kg [11.7% ± 4.7%]). The magnitude of RWG appears to be influenced by the type of sport, competition structure, and recovery duration permitted. A cause for concern is the lack of objective data quantifying the magnitude of RWL. There is insufficient evidence to substantiate the use of RWG as a proxy for RWL, and little data are available in females. By engaging in RWG, athletes are able to exploit the rules to compete up to three weight categories higher than at the official weigh-in.


Asunto(s)
Atletas , Conducta Competitiva , Aumento de Peso , Pérdida de Peso , Peso Corporal , Boxeo , Femenino , Humanos , Masculino , Artes Marciales , Lucha
11.
Redox Biol ; 18: 222-228, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30053728

RESUMEN

Previous studies have demonstrated that exercise results in reactive aldehyde production and that ß-alanine supplementation increases carnosine content in skeletal muscle. However, little is known about the influence exercise and ß-alanine supplementation have on the formation of carnosine-aldehydes. The goal of the present study was to monitor the formation of carnosine-aldehyde adducts, following high-intensity intermittent exercise, before and after ß-alanine supplementation. Vastus lateralis biopsy samples were taken from 14 cyclists, before and after a 28 day ß-alanine supplementation, following 4 bouts of a 30 s all-out cycling test, and carnosine and CAR-aldehyde adducts [carnosine-acrolein, CAR-ACR (m/z 303), carnosine-4-hydroxy-2-hexenal, CAR-HHE (m/z 341) and carnosine-4-hydroxy-2-nonenal, CAR-HNE (m/z 383)] were quantified by HPLC-MS/MS. ß-alanine supplementation increased muscle carnosine content by ~50% (p = 0.0001 vs. Pre-Supplementation). Interestingly, there was a significant increase in post-exercise CAR-ACR content following ß-alanine supplementation (p < 0.001 vs. post-exercise before supplementation), whereas neither exercise alone nor supplementation alone increased CAR-ACR formation. These results suggest that carnosine functions as an acrolein-scavenger in skeletal muscle. Such a role would be relevant to the detoxification of this aldehyde formed during exercise, and appears to be enhanced by ß-alanine supplementation. These novel findings not only have the potential of directly benefiting athletes who engage in intensive training regimens, but will also allow researchers to explore the role of muscle carnosine in detoxifying reactive aldehydes in diseases characterized by abnormal oxidative stress.


Asunto(s)
Acroleína/metabolismo , Carnosina/metabolismo , Suplementos Dietéticos , Entrenamiento de Intervalos de Alta Intensidad , Músculo Esquelético/fisiología , beta-Alanina/metabolismo , Adulto , Aldehídos/metabolismo , Método Doble Ciego , Humanos , Estrés Oxidativo
12.
J Exerc Rehabil ; 14(1): 83-92, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29511657

RESUMEN

The role of plasma glutamine concentration and glutamine supplementation on immunosuppression was investigated in combat athletes. Twenty-three male athletes were randomly assigned to receive glutamine (21 g/day, n=12) or placebo (ovalbumin, n=11) for 10 days. Six athletes who did not lose weight served as controls. Athletes were assessed 21 days before (-21d), 1 day before (-1d) and 5 days after (+5d) a competition. Weight reduction was similar between glutamine (-8.2%± 4.1%) and placebo (-8.5%±2.4%) and negligible in control (-0.6%±1.4%). In both weight-loss groups, the majority of athletes reported symptoms of upper respiratory symptoms, as assessed by the Wisconsin upper respiratory symptom survey questionnaire. Only two athletes reported symptoms in the control group. Immune cell function remained unchanged throughout the study except for an increase in neutrophil phagocytic activity (placebo: -21d=5,251±2,986; -1d=17,428±22,374; +5d=21,125±21,934; glutamine: -21d=6,096±3,549; -1d=11,029±17,113; +5d=28,186±21,032 FI) and a minor change in monocyte phagocytic activity (placebo: -21d=4,421±3,634; -1d=3,329±6,283; +5d=3,243± 2,553; glutamine: -21d=4,051±3,186; -1d=3,106±2,625; +5d=4,981± 4,598) in both glutamine and placebo after weight loss. Plasma glutamine and cortisol remained unchanged across the study. creatine kinase levels were increased in placebo (-21d=125.2±54.1; -1d=187.2± 73.5; +5d=111.3±59.1 U/L) but not in glutamine (-21d=136.2±58.2; -1d= 168.8±65.0; +5d=129.7±64.0 U/L). Rapid weight loss increased the frequency and severity of infection symptoms, but this was neither associated with plasma glutamine depletion nor counteracted by glutamine supplementation.

13.
Br J Sports Med ; 51(8): 658-669, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27797728

RESUMEN

OBJECTIVE: To conduct a systematic review and meta-analysis of the evidence on the effects of ß-alanine supplementation on exercise capacity and performance. DESIGN: This study was designed in accordance with PRISMA guidelines. A 3-level mixed effects model was employed to model effect sizes and account for dependencies within data. DATA SOURCES: 3 databases (PubMed, Google Scholar, Web of Science) were searched using a number of terms ('ß-alanine' and 'Beta-alanine' combined with 'supplementation', 'exercise', 'training', 'athlete', 'performance' and 'carnosine'). ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Inclusion/exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of ß-alanine supplementation on an exercise measure. All healthy participant populations were considered, while supplementation protocols were restricted to chronic ingestion. Cross-over designs were excluded due to the long washout period for skeletal muscle carnosine following supplementation. A single outcome measure was extracted for each exercise protocol and converted to effect sizes for meta-analyses. RESULTS: 40 individual studies employing 65 different exercise protocols and totalling 70 exercise measures in 1461 participants were included in the analyses. A significant overall effect size of 0.18 (95% CI 0.08 to 0.28) was shown. Meta-regression demonstrated that exercise duration significantly (p=0.004) moderated effect sizes. Subgroup analyses also identified the type of exercise as a significant (p=0.013) moderator of effect sizes within an exercise time frame of 0.5-10 min with greater effect sizes for exercise capacity (0.4998 (95% CI 0.246 to 0.753)) versus performance (0.1078 (95% CI -0.201 to 0.416)). There was no moderating effect of training status (p=0.559), intermittent or continuous exercise (p=0.436) or total amount of ß-alanine ingested (p=0.438). Co-supplementation with sodium bicarbonate resulted in the largest effect size when compared with placebo (0.43 (95% CI 0.22 to 0.64)). SUMMARY/CONCLUSIONS: ß-alanine had a significant overall effect while subgroup analyses revealed a number of modifying factors. These data allow individuals to make informed decisions as to the likelihood of an ergogenic effect with ß-alanine supplementation based on their chosen exercise modality.


Asunto(s)
Rendimiento Atlético/fisiología , Suplementos Dietéticos , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , beta-Alanina/farmacología , Carnosina/química , Humanos , Músculo Esquelético/química , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
PLoS One ; 10(4): e0123857, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875297

RESUMEN

OBJECTIVES: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d(-1) on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). METHODS: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. RESULTS: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P < 0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. CONCLUSION: 28 d of beta-alanine supplementation at 6.4 g d(-1) appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists.


Asunto(s)
Encéfalo/metabolismo , Carnosina/metabolismo , Cognición/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , beta-Alanina/farmacología , Adulto , Atletas/psicología , Encéfalo/efectos de los fármacos , Carnosina/análogos & derivados , Suplementos Dietéticos , Ejercicio Físico , Femenino , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo
15.
J Strength Cond Res ; 28(5): 1474-81, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24149757

RESUMEN

Understanding the physiological response to the most common judo training modalities may help to improve the prescription and monitoring of training programs. This review is based on search results using the following terms: "judo," "judo and training," "judo and physiology," "judo and specific exercises," and "judo and combat practice." Uchi-komi (repetitive technical training) is a specific judo exercise that can be used to improve aerobic and anaerobic fitness. Effort to pause ratio, total session duration, number and duration of individual sets, and the type of technique can be manipulated to emphasize specific components of metabolism. "Nage-komi" (repetitive throwing training) can also be used to improve aerobic and anaerobic fitness, depending on the format of the training session. "Randori" (combat or fight practice; sparring) is the training modality most closely related to actual judo matches. Despite the similarities, the physiological demands of randori practice are not as high as observed during real competitive matches. Heart rate has not shown to be an accurate measure of training intensity during any of the previously mentioned judo training modalities. High-volume, high-intensity training programs often lead judo athletes to experience overtraining-related symptoms, with immunosuppression being one of the most common. In conclusion, judo training and judo-specific exercise should be manipulated to maximize training response and competitive performance.


Asunto(s)
Artes Marciales/fisiología , Acondicionamiento Físico Humano/métodos , Acondicionamiento Físico Humano/fisiología , Rendimiento Atlético/fisiología , Frecuencia Cardíaca , Humanos , Ácido Láctico/sangre , Aptitud Física/fisiología
16.
PLoS One ; 8(10): e76752, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124592

RESUMEN

In the present study we have compared the effects of leucine supplementation and its metabolite ß-hydroxy-ß-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB.


Asunto(s)
Suplementos Dietéticos , Leucina/administración & dosificación , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sarcopenia/metabolismo , Valeratos/administración & dosificación , Animales , Suspensión Trasera/efectos adversos , Masculino , Músculo Esquelético/patología , Tamaño de los Órganos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Sarcopenia/tratamiento farmacológico , Sarcopenia/patología
17.
Br J Sports Med ; 47(18): 1155-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24047570

RESUMEN

BACKGROUND: Studies failing to show a negative effect of rapid weight loss (RWL) on performance have been conducted in athletes who have been cycling weight for years. It has been suggested that chronic weight cycling could lead combat athletes to become resistant to the stresses associated with weight loss. To investigate the effects of RWL up to 5% of body mass on high-intensity intermittent performance in weight cyclers (WC) and non-weight cyclers (non-WC). METHODS: Eighteen male combat athletes (WC: n=10; non-WC: n=8) reduced up to 5% of their body mass in 5 days. Body composition, high-intensity performance and plasma lactate were assessed preweight loss and postweight loss. Athletes had 4 h to re-feed and rehydrate following the weigh-in. Food intake was recorded during the weight loss and the recovery periods. RESULTS: Athletes significantly decreased body mass, lean body mass (most likely due to fluid loss) and fat mass following weight loss. No significant changes in performance were found from preweight loss to postweight loss in both groups. Plasma lactate was significantly elevated after exercise in both groups, but no differences were found between groups and in response to RWL. For all these variables no differences were observed between groups. Athletes from both groups ingested high amounts of energy and carbohydrates during the recovery period after the weigh-in. CONCLUSIONS: Chronic weight cycling does not protect athletes from the negative impact of RWL on performance. The time to recover after weigh-in and the patterns of food and fluid ingestion during this period is likely to play the major role in restoring performance to baseline levels.


Asunto(s)
Adaptación Fisiológica/fisiología , Rendimiento Atlético/fisiología , Artes Marciales/fisiología , Pérdida de Peso/fisiología , Lucha/fisiología , Adulto , Composición Corporal/fisiología , Índice de Masa Corporal , Ingestión de Energía/fisiología , Ejercicio Físico/fisiología , Tolerancia al Ejercicio/fisiología , Humanos , Ácido Láctico/sangre , Masculino , Adulto Joven
18.
Amino Acids ; 44(6): 1477-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23479117

RESUMEN

Carnosine was first discovered in skeletal muscle, where its concentration is higher than in any other tissue. This, along with an understanding of its role as an intracellular pH buffer has made it a dipeptide of interest for the athletic population with its potential to increase high-intensity exercise performance and capacity. The ability to increase muscle carnosine levels via ß-alanine supplementation has spawned a new area of research into its use as an ergogenic aid. The current evidence base relating to the use of ß-alanine as an ergogenic aid is reviewed here, alongside our current thoughts on the potential mechanism(s) to support any effect. There is also some emerging evidence for a potential therapeutic role for carnosine, with this potential being, at least theoretically, shown in ageing, neurological diseases, diabetes and cancer. The currently available evidence to support this potential therapeutic role is also reviewed here, as are the potential limitations of its use for these purposes, which mainly focusses on issues surrounding carnosine bioavailability.


Asunto(s)
Carnosina/fisiología , Carnosina/uso terapéutico , Ejercicio Físico/fisiología , Animales , Disponibilidad Biológica , Carnosina/farmacocinética , Suplementos Dietéticos , Humanos , Músculo Esquelético/fisiología , Factores de Tiempo , beta-Alanina/metabolismo , beta-Alanina/farmacología
19.
Amino Acids ; 43(1): 49-56, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22143432

RESUMEN

The aim of this study was to investigate the effects of beta-alanine supplementation on exercise capacity and the muscle carnosine content in elderly subjects. Eighteen healthy elderly subjects (60-80 years, 10 female and 4 male) were randomly assigned to receive either beta-alanine (BA, n=12) or placebo (PL, n=6) for 12 weeks. The BA group received 3.2 g of beta-alanine per day (2×800 mg sustained-release Carnosyn™ tablets, given 2 times per day). The PL group received 2× (2×800 mg) of a matched placebo. At baseline (PRE) and after 12 weeks (POST-12) of supplementation, assessments were made of the muscle carnosine content, anaerobic exercise capacity, muscle function, quality of life, physical activity and food intake. A significant increase in the muscle carnosine content of the gastrocnemius muscle was shown in the BA group (+85.4%) when compared with the PL group (+7.2%) (p=0.004; ES: 1.21). The time-to-exhaustion in the constant-load submaximal test (i.e., TLIM) was significantly improved (p=0.05; ES: 1.71) in the BA group (+36.5%) versus the PL group (+8.6%). Similarly, time-to-exhaustion in the incremental test was also significantly increased (p=0.04; ES 1.03) following beta-alanine supplementation (+12.2%) when compared with placebo (+0.1%). Significant positive correlations were also shown between the relative change in the muscle carnosine content and the relative change in the time-to-exhaustion in the TLIM test (r=0.62; p=0.01) and in the incremental test (r=0.48; p=0.02). In summary, the current data indicate for the first time, that beta-alanine supplementation is effective in increasing the muscle carnosine content in healthy elderly subjects, with subsequent improvement in their exercise capacity.


Asunto(s)
Carnosina/metabolismo , Suplementos Dietéticos , Músculo Esquelético/fisiología , Resistencia Física/efectos de los fármacos , beta-Alanina/administración & dosificación , Anciano , Anciano de 80 o más Años , Envejecimiento , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo
20.
Sports Med ; 41(2): 147-66, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21244106

RESUMEN

To be successful in international competitions, judo athletes must achieve an excellent level of physical fitness and physical condition during training. This article reviews the physiological profiles of elite judo athletes from different sex, age and weight categories. Body fat is generally low for these athletes, except for the heavyweight competitors. In general, elite judo athletes presented higher upper body anaerobic power and capacity than non-elite athletes. Lower body dynamic strength seems to provide a distinction between elite and recreational judo players, but not high-level judo players competing for a spot on national teams. Even maximal isometric strength is not a discriminant variable among judo players. However, more studies focusing on isometric strength endurance are warranted. Although aerobic power and capacity are considered relevant to judo performance, the available data do not present differences among judo athletes from different competitive levels. Typical maximal oxygen uptake values are around 50-55 mL/kg/min for male and 40-45 mL/kg/min for female judo athletes. As for other variables, heavyweight competitors presented lower aerobic power values. The typical differences commonly observed between males and females in the general population are also seen in judo athletes when analysing anaerobic power and capacity, aerobic power, and maximal strength and power. However, further research is needed concerning the differences among the seven weight categories in which judo athletes compete.


Asunto(s)
Atletas , Artes Marciales/fisiología , Aptitud Física/fisiología , Adolescente , Adulto , Anciano , Umbral Anaerobio/fisiología , Composición Corporal/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiología , Resistencia Física/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA