Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroscience ; 310: 206-15, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26393428

RESUMEN

Transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is expressed in muscle afferents and direct activation of these receptors induces acute mechanical hypersensitivity. However, the functional role of TRPA1 under pathological muscle pain conditions and mechanisms by which TRPA1 mediate muscle pain and hyperalgesia are not clearly understood. Two rodent behavioral models validated to assess craniofacial muscle pain conditions were used to study ATP- and N-Methyl-D-aspartate (NMDA)-induced acute mechanical hypersensitivity and complete Freund's adjuvant (CFA)-induced persistent mechanical hypersensitivity. The rat grimace scale (RGS) was utilized to assess inflammation-induced spontaneous muscle pain. Behavioral pharmacology experiments were performed to assess the effects of AP18, a selective TRPA1 antagonist under these conditions. TRPA1 expression levels in trigeminal ganglia (TG) were examined before and after CFA treatment in the rat masseter muscle. Pre-treatment of the muscle with AP18 dose-dependently blocked the development of acute mechanical hypersensitivity induced by NMDA and α,ß-methylene adenosine triphosphate (αßmeATP), a specific agonist for NMDA and P2X3 receptor, respectively. CFA-induced mechanical hypersensitivity and spontaneous muscle pain responses were significantly reversed by post-treatment of the muscle with AP18 when CFA effects were most prominent. CFA-induced myositis was accompanied by significant up-regulation of TRPA1 expression in TG. Our findings showed that TRPA1 in muscle afferents plays an important role in the development of acute mechanical hypersensitivity and in the maintenance of persistent muscle pain and hypersensitivity. Our data suggested that TRPA1 may serve as a downstream target of pro-nociceptive ion channels, such as P2X3 and NMDA receptors in masseter afferents, and that increased TRPA1 expression under inflammatory conditions may contribute to the maintenance of persistent muscle pain and mechanical hyperalgesia. Mechanistic studies elucidating transcriptional or post-translational regulation of TRPA1 expression under pathological pain conditions should provide important basic information to further advance the treatment of craniofacial muscle pain conditions.


Asunto(s)
Mialgia/etiología , Mialgia/patología , Miositis/complicaciones , Umbral del Dolor/fisiología , Canales Catiónicos TRPC/metabolismo , Ganglio del Trigémino/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/toxicidad , Adyuvante de Freund/efectos adversos , Hiperalgesia/inducido químicamente , Hiperalgesia/patología , Masculino , N-Metilaspartato/toxicidad , Oximas/toxicidad , Umbral del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/ética
2.
Neuroscience ; 297: 160-9, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25849615

RESUMEN

Trigeminal ganglia (TG) contain neuronal cell bodies surrounded by satellite glial cells. Although peripheral injury is well known to induce changes in gene expression within sensory ganglia, detailed mechanisms whereby peripheral injury leads to gene expression within sensory ganglia are not completely understood. Reactive oxygen species (ROS) are an important modulator of hyperalgesia, but the role of ROS generated within sensory ganglia is unclear. Since ROS are known to affect transcription processes, ROS generated within sensory ganglia could directly influence gene expression and induce cellular changes at the soma level. In this study, we hypothesized that peripheral inflammation leads to cytokine and chemokine production and ROS generation within TG and that transient receptor potential melastatin (TRPM2), a well known oxidative sensor, contributes to ROS-induced gene regulation within TG. The masseter injection of complete Freund's adjuvant (CFA) resulted in a significantly elevated level of ROS within TG of the inflamed side with a concurrent increase in cytokine expression in TG. Treatment of TG cultures with H2O2 significantly up-regulated mRNA and protein levels of cytokine/chemokine such as interleukin 6 (IL-6) and chemokine (C-X-C motif) ligand 2 (CXCL2). TRPM2 was expressed in both neurons and non-neuronal cells in TG, and pretreatment of TG cultures with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of TRPM2, or siRNA against TRPM2 attenuated H2O2-induced up-regulation of IL-6 and CXCL2. These results suggested that activation of TRPM2 could play an important role in the modulation of cytokine/chemokine expression within TG under oxidative stress and that such changes may contribute to amplification of nociceptive signals leading to pathological pain conditions.


Asunto(s)
Citocinas/metabolismo , Peróxido de Hidrógeno/farmacología , Inflamación/metabolismo , Oxidantes/farmacología , Canales Catiónicos TRPM/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Animales , Compuestos de Boro/uso terapéutico , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Adyuvante de Freund/toxicidad , Lateralidad Funcional , Inflamación/inducido químicamente , Masculino , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Ganglio del Trigémino/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA