Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomolecules ; 12(6)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35740980

RESUMEN

Nanotechnology is an emerging area of research that deals with the production, manipulation, and application of nanoscale materials. Bio-assisted synthesis is of particular interest nowadays, to overcome the limitations associated with the physical and chemical means. The aim of this study was to synthesize ZnO nanoparticles (NPs) for the first time, utilizing the seed extract of Lepidium sativum. The synthesized NPs were confirmed through various spectroscopy and imagining techniques, such as XRD, FTIR, HPLC, and SEM. The characterized NPs were then examined for various in vitro biological assays. Crystalline, hexagonal-structured NPs with an average particle size of 25.6 nm were obtained. Biosynthesized ZnO NPs exhibited potent antioxidant activities, effective α-amylase inhibition, moderate urease inhibition (56%), high lipase-inhibition (71%) activities, moderate cytotoxic potential, and significant antibacterial activity. Gene expression of caspase in HepG2 cells was enhanced along with elevated production of ROS/RNS, while membrane integrity was disturbed upon the exposure of NPs. Overall results indicated that bio-assisted ZnO NPs exhibit excellent biological potential and could be exploited for future biomedical applications. particularly in antimicrobial and cancer therapeutics. Moreover, this is the first comprehensive study on Lepidium sativum-mediated synthesis of ZnO nanoparticles and evaluation of their biological activities.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Lepidium sativum/metabolismo , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Óxido de Zinc/química
2.
RSC Adv ; 12(22): 14069-14083, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558860

RESUMEN

Use of medicinal plants for the biosynthesis of nanoparticles offers several advantages over other synthesis approaches. Plants contain a variety of bioactive compounds that can participate in reduction and capping of nanoparticles. Plant mediated synthesis has the leverage of cost effectiveness, eco-friendly approach and sustained availability. In the current study Silybum marianum, a medicinally valuable plant rich in silymarin content, is used as a reducing and stabilizing agent for the fabrication of nanoparticles. Biosynthesized CuO-NPs were characterized using High Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS) techniques. Characterization revealed that CuO-NPs having a crystalline structure showed spherical morphology with an average size of 15 nm. HPLC analysis demonstrated conjugation of various silymarin components, especially the presence of silybin A (705.06 ± 1.59 mg g-1 DW). CuO-NPs exhibited strong bactericidal potency against clinically important pathogenic bacterial strains e.g. Enterobacter aerogenes and Salmonella typhi with an inhibition zone of 18 ± 1.3 mm and 17 ± 1.2 mm, respectively. Synthesized nanoparticles indicated a dose dependent cytotoxic effect against fibroblast cells exhibiting a percentage cell viability of 83.60 ± 1.505% and 55.1 ± 1.80% at 25 µg mL-1 and 100 µg mL-1 concentration, respectively. Moreover, CuO-NPs displayed higher antioxidant potential in terms of (TAC: 96.9 ± 0.26 µg AAE/mg), (TRP: 68.8 ± 0.35 µg AAE/mg), (DPPH: 55.5 ± 0.62%), (ABTS: 332.34 µM) and a significant value for (FRAP: 215.40 µM). Furthermore, enzyme inhibition assays also exhibited excellent enzyme inhibition potential against α-amylase (35.5 ± 1.54%), urease (78.4 ± 1.26%) and lipase (80.50.91%), respectively. Overall findings indicated that biosynthesized CuO-NPs possess immense in vitro biological and biomedical properties and could be used as a broad-spectrum agent for a wider range of biomedical applications.

3.
Artif Cells Nanomed Biotechnol ; 49(1): 626-634, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34597252

RESUMEN

Nano-elicitation is one among the prioritised strategies considered globally for sustainable and uniform production of industrially important medicinal compounds. Ocimum basilicum (Thai basil), a renowned medicinal species is a reservoir of commercially vital metabolites and proved for its health assuring effects in cancer, diabetes, microbial and cardiovascular diseases. However, its consumption and industrial demand raised intent to divert towards better alternates for ensuring sustainable production of medicinal compounds. Herein, we investigated the comparative potential of metal oxide [copper oxide (CuO) and manganese oxide (MnO)] nanoparticles to elicit the biosynthesis of bioactive metabolites and antioxidative capacity of O.basilicum callus cultures. Results showed that callus grown on MS media supplemented with 10 mg/L CuO-NPs resulted in the highest biomass accumulation (FW: 172.8 g/L, DW: 16.7 g/L), phenolic contents (TPC: 27.5 mg/g DW), and flavonoid contents (TFC: 9.1 mg/g DW) along with antioxidant activities (DPPH: 94%, ABTS: 881 µM TEAC, FRAP: 386 µM TEAC) compared with MnO-NPs and control. Likewise, the Superoxide dismutase (SOD: 1.28 nM/min/mg FW) and Peroxidase (POD: 0.48 nM/min/mg FW) activities were also recorded maximum in CuO-NPs elicited cultures than MnO-NPs and control. Moreover, the HPLC results showed that rosmarinic acid (11.4 mg/g DW), chicoric acid (16.6 mg/g DW), eugenol (0.21 mg/g DW) was found optimum in cultures at 10 mg/L CuO-NPs. Overall, it can be concluded that CuO nanoparticles can be effectively used as a elicitor for biosynthesis of metabolites in callus cultures of O. basilicum (Thai basil). The study is indeed a contribution to the field that will help decoding the mechanism of action of CuO NPs. However, further molecular investigations are needed to fully develop understanding about the metabolic potential of O. bascillicum and scalling up this protocol for bulkup production of bioactive compounds.


Asunto(s)
Ocimum basilicum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA