Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Omega ; 8(50): 48269-48279, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144113

RESUMEN

Cistus parviflorus L. (Cistaceae) is a medicinal plant with several folkloric applications, including being used for urinary tract infections and as a food additive. In this study, the polyphenolic diversity and the antioxidant, antidiabetic, and antimicrobial activities of the C. parviflorus methanolic extract were evaluated. Spectrophotometric and HPLC-based analyses using standard polyphenolic compounds were conducted to measure the phenolics and flavonoids in the plant extract. The in vitro DPPH, ORAC, FRAP, and α-glucosidase assays were used to evaluate the plant's antioxidant and antidiabetic activities. Furthermore, disc diffusion and MIC-based microdilution tests were applied to evaluate the antimicrobial activity of the plant against broad-spectrum microorganisms. The analysis revealed the existence of high phenolic and flavonoid quantities that were measured at 302.59 ± 0.6 µg GAE and 134.3 ± 0.5 µg RE, respectively. The HPLC-based analysis revealed the existence of 18 phenolic acids and 8 flavonoids. The major phenolic acid was ellagic acid (169.03 ppm), while catechin was the major flavonoid (91.80 ppm). Remarkable antioxidant activity was measured using three different assays: DPPH, ORAC, and FRAP. Furthermore, strong inhibition of α-glucosidase compared to acarbose was recorded for the plant extract (IC50 0.924 ± 0.6). The results showed that C. parviflorus's extract had a strong anti-Escherichia coli effect with MIC value of 0.98 µg\mL and IZD value of 32.2 ± 0.58 mm compared to 25.3 ± 0.18 mm for gentamycin, the positive control. Moreover, Aspergillus niger, Aspergillus fumigatus, Staphylococcus aureus, Streptococcus pyogenes, and Salmonella typhimurium all showed significant growth inhibition in response to the extract, a result that may be related to the use of the plant in traditional medicine to treat urinary tract infections. The docking study indicated the higher binding affinity of the major identified compounds, i.e., ellagic acid, rutin, naringin, catechin, and punicalagin, to the S. aureus gyrase-DNA complex, which might suggest the possible mechanisms of the plant as antimicrobial agents.

2.
Chin Med ; 18(1): 154, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001538

RESUMEN

Honokiol is a neolignan biphenol found in aerial parts of the Magnolia plant species. The Magnolia plant species traditionally belong to China and have been used for centuries to treat many pathological conditions. Honokiol mitigates the severity of several pathological conditions and has the potential to work as an anti-inflammatory, anti-angiogenic, anticancer, antioxidant, and neurotherapeutic agent. It has a long history of being employed in the healthcare practices of Southeast Asia, but in recent years, a greater scope of research has been conducted on it. Plenty of experimental evidence suggests it could be beneficial as a neuroprotective bioactive molecule. Honokiol has several pharmacological effects, leading to its exploration as a potential therapy for neurological diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, spinal cord injury, and so on. So, based on the previous experimentation reports, our goal is to discuss the neuroprotective properties of honokiol. Besides, honokiol derivatives have been highlighted recently as possible therapeutic options for NDs. So, this review focuses on honokiol's neurotherapeutic actions and toxicological profile to determine their safety and potential use in neurotherapeutics.

3.
Int J Biol Macromol ; 253(Pt 4): 126886, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37709228

RESUMEN

Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 µg/ml, with an IC50 value of 45.22 µg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 µg/ml with an IC50 of 2.58 µg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.


Asunto(s)
Litchi , Nanopartículas del Metal , Nanoestructuras , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Litchi/química , Biomasa , Células HEK293 , Antibacterianos/farmacología , Antibacterianos/química , Hidróxidos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nanopartículas del Metal/química
4.
Plants (Basel) ; 10(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34834641

RESUMEN

Rauwolfia serpentina (R. serpentina), belonging to the family Apocynaceae, is a renowned medicinal herb for its different pharmacological activities such as antibacterial, antifungal, anti-inflammatory, and antiproliferative characteristics. This study has done a comparative assessment of the antibacterial, antioxidant, and anti-cancer activity of R. serpentina aqueous leaf extract (RSALE) with encapsulated gold nanoparticles (R-AuNPs). The R-AuNPs are prepared so that they are significant in size, monodispersed, and extremely stable. Their characterization was done by numerous parameters, including UV-visible spectroscopy (528 nm), transmission electron microscopy (~17 d. nm), dynamic light scattering (~68 d. nm), and zeta-potential (~-17 mV). Subsequently, a potent antibacterial activity was depicted via RSALE and R-AuNPs when examined by disc diffusion against various Gram-positive and Gram-negative bacterial strains. The obtained zones of inhibition of RSALE (100 mg/mL) were 34 ± 0.1, 35 ± 0.1, 28.4 ± 0.01, and 18 ± 0.01, although those of R-AuNPs (15 mg/mL) were 24.4 ± 0.12, 22 ± 0.07, 20 ± 0.16, and 17 ± 0.3 against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (MTCC 8114), and Streptococcus pyogenes (ATCC 19615), respectively. However, no zone of inhibition was obtained when tested against Proteus vulgaris (MTCC 1771). Furthermore, the obtained MIC values for Staphylococcus aureus were 0.91, 0.61, and 1.15 mg/mL; for Escherichia coli, 0.79, 0.36, and 1.02 mg/mL; for Bacillus subtilis 0.42, 0.27, and 0.474 mg/mL; and for Streptococcus pyogenes, 7.67, 3.86, and 8.5 mg/mL of pure RSALE, R-AuNPs, and Amoxicillin (control), respectively, incorporating that R-AuNPs have been shown to have a 1.4-fold, 2.1-fold, 1.5-fold, and 1.9-fold enhanced antibacterial activity in contrast to pure RSALE tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Streptococcus pyogenes, and Proteus vulgaris, respectively. Additionally, an enhanced antioxidant potential was detected in R-AuNPs compared to RSALE evaluated by the 2,2-Diphenyl-1-Picryl Hydrazyl Radical Scavenging (DPPH) Ferric reducing antioxidant power (FRAP) assay. The determined IC 50 values of RSALE and R-AuNPs were 0.131 ± 0.05 and 0.184 ± 0.02 mg/mL, and 0.110 ± 0.1 and 0.106 ± 0.24 mg/mL via the FRAP and DPPH assays, respectively. In addition, the anti-cancer activity against the human cervical cancer (Hela) cell line was evaluated, and the MTT assay results revealed that R-AuNPs (IC50 88.3 µg/mL) had an enhanced anti-cancer potential in contrast to RSALE (171.5 µg/mL). Subsequently, the findings of this study indicated that R. serpentina leaves and their nanoformulation can be used as a potent source for the treatment of the above-mentioned complications and can be used as a possible agent for novel target-based therapies for the management of different ailments.

5.
Saudi J Kidney Dis Transpl ; 31(2): 533-536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32394930
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA