Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(7): 16905-16929, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36607568

RESUMEN

The growing concern about environmental damage and the inability to meet the demand for more versatile, environmentally friendly materials has sparked increasing interest in polymer composites derived from renewable and biodegradable plant-based materials, mainly from forests. These composites are mostly referred to as "green" and they can be widely employed in many industrial applications. Green composites are less harmful to the environment and could be potential substitutes for petroleum-based polymeric materials. It is helpful to limit usage of fossil oil assets by developing biopolymer matrices such as cellulose-reinforced biocomposites using renewable assets such as plant oils, carbohydrates, and proteins. This paper focuses on green composites processing utilizing a variety of naturally available resources, sustainable materials which are not detrimental to the environment, new scientific signs of progress in achieving green sustainable development, as well as nanotechnology and its environmental consequences. Additionally, the environmental impacts of different composite materials are examined in this paper, along with their production from eco-friendly materials. Moreover, the manufacturing aspects of green composites and some concerns related to their production are also discussed. The merits of green composite materials and valid reasons why they are a valuable substitute for the traditionally used composite materials are also covered.


Asunto(s)
Celulosa , Polímeros , Biopolímeros , Nanotecnología , Ambiente
2.
Environ Sci Pollut Res Int ; 29(33): 50617-50631, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35235116

RESUMEN

Solar energy will assist in lowering the price of fossil fuels. The current research is based on a study of a solar dryer with thermal storage that uses water and waste engine oil as the working medium at flow rates of 0.035, 0.045, and 0.065 l/s. A parabolic trough collector was used to collect heat, which was then stored in a thermal energy storage device. The system consisted of rectangular boxes containing stearic acid phase change materials with 0.3vol % Al2O3 nanofluids, which stored heat for the waste engine oil medium is 0.33 times that of the water medium at a rate of flow of 0.035 l/s which was also higher than the flow rates of 0.045 and 0.065 l/s. The parabolic trough reflected solar radiation to the receiver, and the heat was collected in the storage medium before being forced into circulation and transferred to the solar dryer. At a flow rate of 0.035 l/s, the energy output of the solar dryer's waste engine oil medium and water was determined to be roughly 12.4, 14, and 15.1, and 9.8, 10.5, and 11.5 times lower than the crops output of groundnut, ginger, and turmeric, respectively. The energy output in the storage tank and the drying of groundnut, ginger, and turmeric crops with water and waste engine oil medium at varied flow rates of 0.035, 0.045, and 0.065 l/s were studied. Finally, depending on the findings of the tests, this research could be useful in agriculture, notably in the drying of vegetables.


Asunto(s)
Calor , Energía Solar , Óxido de Aluminio , Luz Solar , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA