Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 16(3): e0247573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33684143

RESUMEN

Kola nut (from Cola nitida) is popular in Nigeria and West Africa and is commonly consumed by pregnant women during the first trimester to alleviate morning sickness and dizziness. There is, however, a dearth of information on its effects on the developing brain. This study, therefore, investigated the potential effects of kola nut on the structure of the developing neonatal and juvenile cerebellum in the rat. Pregnant Wistar rats were administered water (as control) or crude (aqueous) kola nut extract at 400, 600, and 800 mg/kg body weight orally, from pregnancy to day 21 after birth. On postnatal days 1, 7, 14, 21 and 28, the pups were weighed, anaesthetised, sacrificed and perfused with neutral buffered formalin. Their brains were dissected out, weighed and the cerebellum preserved in 10% buffered formalin. Paraffin sections of the cerebellum were stained with haematoxylin and eosin for cerebellar cytoarchitecture, cresyl violet stain for Purkinje cell count, Glial Fibrillary Acidic Protein (GFAP) immunohistochemistry (IHC) for estimation of gliosis, and B-cell lymphoma 2 (Bcl-2) IHC for apoptosis induction. The kola nut-treated rats exhibited initial reduction in body and brain weights, persistent external granular layer, increased molecular layer thickness, and loss of Bergmann glia. Their Purkinje cells showed reduction in density, loss of dendrites and multiple layering, and their white matter showed neurodegeneration (spongiosis) and GFAP and Bcl-2 over-expression, with evidence of reactive astrogliosis. This study, therefore, demonstrates that kola nut, administered repeatedly at certain doses to pregnant dams, could disrupt normal postnatal cerebellar development in their pups. The findings suggest potential deleterious effects of excessive kola nut consumption on human brain and thus warrant further studies to understand the wider implications for human brain development.


Asunto(s)
Cerebelo/efectos de los fármacos , Cerebelo/patología , Cola/efectos adversos , Extractos Vegetales/efectos adversos , Administración Oral , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Cerebelo/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/análisis , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Nigeria , Extractos Vegetales/administración & dosificación , Embarazo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ratas , Ratas Wistar
2.
Drug Chem Toxicol ; 41(3): 249-258, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28925291

RESUMEN

Moringa oleifera is reported to be a miracle plant, with positive effects on practically every system in the animal body. The methanolic extract of Moringa oleifera leaves was fractionated using liquid-liquid fractionation, column chromatography and preparative high-performance liquid chromatography (HPLC). Bioassay guided fractionation using Ferric Reducing Antioxidant Power (FRAP) was used to determine the fraction with the highest antioxidative power. Chemical structure was elucidated with nuclear magnetic resonance (NMR) spectroscopy. FRAP showed that the pure compound, butyl p-hydroxyphenyl-acetate (MIMO2) exhibited an antioxidant activity higher than TEMPOL (positive control). Vanadium is a metal, which as a salt has been shown to be a neurotoxicant; and was therefore used to assess the efficacy of MIMO2 in this experiment. HT22 (immortalized mouse hippocampal) cells were used for cell culture. The Comet assay showed a statistically significant reduction (p < .05) in DNA damage when 0.25 and 0.5 µM MIMO2 as well as 0.1 and 0.2 mg of the methanolic extract of Moringa oleifera leaves (MO) were used in combination with 200 µM vanadium (sodium metavanadate). Analogously, a reduced formation of superoxide was observed using dihydroethidium (2,7-Diamino-10-ethyl-9-phenyl-9,10-dihydrophenanthridine-DHE) stain after 0.5 µM MIMO2 and 0.063 mg MO were used in combination with vanadium 100 µM. MIMO2 and MO gave a statistically significant (p < .05) protective effect against vanadium toxicity on neuronal cells. Further assays may need to be performed to assess the extent of protection that MIMO2 may offer, and also to better understand its mechanisms of action.


Asunto(s)
Antioxidantes/aislamiento & purificación , Moringa oleifera/química , Extractos Vegetales/análisis , Hojas de la Planta/química , Vanadio/toxicidad , Animales , Antioxidantes/farmacología , Células Cultivadas , Cromatografía Líquida de Alta Presión , Citoprotección , Daño del ADN , Ratones , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA