Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mol Biol ; 431(22): 4381-4407, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31442478

RESUMEN

Selenoproteins typically contain a single selenocysteine, the 21st amino acid, encoded by a context-redefined UGA. However, human selenoprotein P (SelenoP) has a redox-functioning selenocysteine in its N-terminal domain and nine selenium transporter-functioning selenocysteines in its C-terminal domain. Here we show that diverse SelenoP genes are present across metazoa with highly variable numbers of Sec-UGAs, ranging from a single UGA in certain insects, to 9 in common spider, and up to 132 in bivalve molluscs. SelenoP genes were shaped by a dynamic evolutionary process linked to selenium usage. Gene evolution featured modular expansions of an ancestral multi-Sec domain, which led to particularly Sec-rich SelenoP proteins in many aquatic organisms. We focused on molluscs, and chose Pacific oyster Magallana gigas as experimental model. We show that oyster SelenoP mRNA with 46 UGAs is translated full-length in vivo. Ribosome profiling indicates that selenocysteine specification occurs with ∼5% efficiency at UGA1 and approaches 100% efficiency at distal 3' UGAs. We report genetic elements relevant to its expression, including a leader open reading frame and an RNA structure overlapping the initiation codon that modulates ribosome progression in a selenium-dependent manner. Unlike their mammalian counterparts, the two SECIS elements in oyster SelenoP (3'UTR recoding elements) do not show functional differentiation in vitro. Oysters can increase their tissue selenium level up to 50-fold upon supplementation, which also results in extensive changes in selenoprotein expression.


Asunto(s)
Codón de Terminación/genética , Moluscos/química , Moluscos/genética , Selenoproteína P/química , Selenoproteína P/genética , Animales , Evolución Biológica , Biosíntesis de Proteínas , Selenocisteína/química , Selenocisteína/genética
2.
Open Biol ; 6(11)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27881738

RESUMEN

Dynamic redefinition of the 10 UGAs in human and mouse selenoprotein P (Sepp1) mRNAs to specify selenocysteine instead of termination involves two 3' UTR structural elements (SECIS) and is regulated by selenium availability. In addition to the previously known human Sepp1 mRNA poly(A) addition site just 3' of SECIS 2, two further sites were identified with one resulting in 10-25% of the mRNA lacking SECIS 2. To address function, mutant mice were generated with either SECIS 1 or SECIS 2 deleted or with the first UGA substituted with a serine codon. They were fed on either high or selenium-deficient diets. The mutants had very different effects on the proportions of shorter and longer product Sepp1 protein isoforms isolated from plasma, and on viability. Spatially and functionally distinctive effects of the two SECIS elements on UGA decoding were inferred. We also bioinformatically identify two selenoprotein S mRNAs with different 5' sequences predicted to yield products with different N-termini. These results provide insights into SECIS function and mRNA processing in selenoprotein isoform diversity.


Asunto(s)
Mutación , ARN Mensajero/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Regiones no Traducidas 3' , Empalme Alternativo , Animales , Codón de Terminación , Células Hep G2 , Humanos , Ratones , Isoformas de Proteínas/genética , Selenio/metabolismo
3.
J Biol Chem ; 287(48): 40414-24, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23038251

RESUMEN

BACKGROUND: Sepp1 transports selenium, but its complete role in selenium homeostasis is not known. RESULTS: Deletion of Sepp1 in hepatocytes increases liver selenium at the expense of other tissues and decreases whole-body selenium by increasing excretion. CONCLUSION: Sepp1 production by hepatocytes retains selenium in the organism and distributes it from the liver to peripheral tissues. SIGNIFICANCE: Sepp1 is central to selenium homeostasis. Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1(c/c)/alb-cre(+/-) mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1(c/c) mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1(c/c)/alb-cre(+/-) mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions.


Asunto(s)
Hepatocitos/metabolismo , Selenio/metabolismo , Selenoproteína P/metabolismo , Animales , Transporte Biológico , Femenino , Homeostasis , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Selenoproteína P/genética
4.
J Biol Chem ; 282(15): 10972-80, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17311913

RESUMEN

Selenoprotein P (Sepp1) has two domains with respect to selenium content: the N-terminal, selenium-poor domain and the C-terminal, selenium-rich domain. To assess domain function, mice with deletion of the C-terminal domain have been produced and compared with Sepp1-/- and Sepp1+/+ mice. All mice studied were males fed a semipurified diet with defined selenium content. The Sepp1 protein in the plasma of mice with the C-terminal domain deleted was determined by mass spectrometry to terminate after serine 239 and thus was designated Sepp1Delta240-361. Plasma Sepp1 and selenium concentrations as well as glutathione peroxidase activity were determined in the three types of mice. Glutathione peroxidase and Sepp1Delta240-361 accounted for over 90% of the selenium in the plasma of Sepp1Delta240-361 mice. Calculations using results from Sepp1+/+ mice revealed that Sepp1, with a potential for containing 10 selenocysteine residues, contained an average of 5 selenium atoms per molecule, indicating that shortened and/or selenium-depleted forms of the protein were present in these wild-type mice. Sepp1Delta240-361 mice had low brain and testis selenium concentrations that were similar to those in Sepp1-/- mice but they better maintained their whole body selenium. Sepp1Delta240-361 mice had depressed fertility, even when they were fed a high selenium diet, and their spermatozoa were defective and morphologically indistinguishable from those of selenium-deficient mice. Neurological dysfunction and death occurred when Sepp1Delta240-361 mice were fed selenium-deficient diet. These phenotypes were similar to those of Sepp1-/- mice but had later onset or were less severe. The results of this study demonstrate that the C terminus of Sepp1 is critical for the maintenance of selenium in brain and testis but not for the maintenance of whole body selenium.


Asunto(s)
Encéfalo/metabolismo , Selenio/metabolismo , Selenoproteína P/metabolismo , Testículo/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores , Fertilidad , Masculino , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos , Selenio/deficiencia , Selenoproteína P/química , Selenoproteína P/genética , Tasa de Supervivencia
5.
J Mol Biol ; 345(1): 39-49, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15567409

RESUMEN

Programmed ribosomal bypassing occurs in decoding phage T4 gene 60 mRNA. Half the ribosomes bypass a 50 nucleotide gap between codons 46 and 47. Peptidyl-tRNA dissociates from the "take-off" GGA, codon 46, and re-pairs to mRNA at a matched GGA "landing site" codon directly 5' of codon 47 where translation resumes. The system described here allows the contribution of peptidyl-tRNA re-pairing to be measured independently of dissociation. The matched GGA codons have been replaced by 62 other matched codons, giving a wide range of bypassing efficiencies. Codons with G or C in either or both of the first two codon positions yielded high levels of bypassing. The results are compared with those from a complementary study of non-programmed bypassing, where the combined effects of peptidyl-tRNA dissociation and reassociation were measured. The wild-type, GGA, matched codons are the most efficient in their gene 60 context in contrast to the relatively low value in the non-programmed bypassing study.


Asunto(s)
Anticodón/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Anticodón/genética , Arginina/genética , Secuencia de Bases , Codón/genética , Codón/metabolismo , Citosina/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Guanina/metabolismo , Inosina/genética , Conformación de Ácido Nucleico , Nucleósido Q/genética , Nucleósido Q/metabolismo , ARN Mensajero/genética , ARN de Transferencia/genética , Ribosomas/metabolismo , Serina/genética , Valina/genética
6.
J Biol Chem ; 278(16): 13640-6, 2003 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-12574155

RESUMEN

Selenoprotein P (Se-P) contains most of the selenium in plasma. Its function is not known. Mice with the Se-P gene deleted (Sepp(-/-)) were generated. Two phenotypes were observed: 1) Sepp(-/-) mice lost weight and developed poor motor coordination when fed diets with selenium below 0.1 mg/kg, and 2) male Sepp(-/-) mice had sharply reduced fertility. Weanling male Sepp(+/+), Sepp(+/-), and Sepp(-/-) mice were fed diets for 8 weeks containing <0.02-2 mg selenium/kg. Sepp(+/+) and Sepp(+/-) mice had similar selenium concentrations in all tissues except plasma where a gene-dose effect on Se-P was observed. Liver selenium was unaffected by Se-P deletion except that it increased when dietary selenium was below 0.1 mg/kg. Selenium in other tissues exhibited a continuum of responses to Se-P deletion. Testis selenium was depressed to 19% in mice fed an 0.1 mg selenium/kg diet and did not rise to Sepp(+/+) levels even with a dietary selenium of 2 mg/kg. Brain selenium was depressed to 43%, but feeding 2 mg selenium/kg diet raised it to Sepp(+/+) levels. Kidney was depressed to 76% and reached Sepp(+/+) levels on an 0.25 mg selenium/kg diet. Heart selenium was not affected. These results suggest that the Sepp(-/-) phenotypes were caused by low selenium in testis and brain. They strongly suggest that Se-P from liver provides selenium to several tissues, especially testis and brain. Further, they indicate that transport forms of selenium other than Se-P exist because selenium levels of all tissues except testis responded to increases of dietary selenium in Sepp(-/-) mice.


Asunto(s)
Eliminación de Gen , Proteínas/genética , Selenio/metabolismo , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Vectores Genéticos , Genotipo , Glutatión Peroxidasa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Genéticos , Miocardio/metabolismo , Fenotipo , Selenio/farmacología , Selenoproteína P , Selenoproteínas , Testículo/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA