Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612814

RESUMEN

Ag nanoparticles (AgNPs) were biosynthesized using sage (Salvia officinalis L.) extract. The obtained nanoparticles were supported on SBA-15 mesoporous silica (S), before and after immobilization of 10% TiO2 (Degussa-P25, STp; commercial rutile, STr; and silica synthesized from Ti butoxide, STb). The formation of AgNPs was confirmed by X-ray diffraction. The plasmon resonance effect, evidenced by UV-Vis spectra, was preserved after immobilization only for the sample supported on STb. The immobilization and dispersion properties of AgNPs on supports were evidenced by TEM microscopy, energy-dispersive X-rays, dynamic light scattering, photoluminescence and FT-IR spectroscopy. The antioxidant activity of the supported samples significantly exceeded that of the sage extract or AgNPs. Antimicrobial tests were carried out, in conditions of darkness and white light, on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Higher antimicrobial activity was evident for SAg and STbAg samples. White light increased antibacterial activity in the case of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In the first case, antibacterial activity increased for both supported and unsupported AgNPs, while in the second one, the activity increased only for SAg and STbAg samples. The proposed antibacterial mechanism shows the effect of AgNPs and Ag+ ions on bacteria in dark and light conditions.


Asunto(s)
Antígenos de Grupos Sanguíneos , Nanopartículas del Metal , Antioxidantes/farmacología , Escherichia coli , Espectroscopía Infrarroja por Transformada de Fourier , Plata/farmacología , Antígenos Fúngicos , Antibacterianos/farmacología , Antígenos O , Dióxido de Silicio , Extractos Vegetales/farmacología
2.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36290658

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high death rate and an inadequate response to conventional chemotherapeutic drugs. Medical research explores plant extracts' properties to obtain potential nanomaterial-based anticancer drugs. The present study aims to formulate, develop, and characterize mucoadhesive oral films loaded with Usnea barbata (L.) dry acetone extract (F-UBA) and to investigate their anticancer potential for possible use in oral cancer therapy. U. barbata dry acetone extract (UBA) was solubilized in ethanol: isopropanol mixture and loaded in a formulation containing hydroxypropyl methylcellulose (HPMC) K100 and polyethylene glycol 400 (PEG 400). The UBA influence on the F-UBA pharmaceutical characteristics was evidenced compared with the references, i.e., mucoadhesive oral films containing suitable excipients but no active ingredient loaded. Both films were subjected to a complex analysis using standard methods to evaluate their suitability for topical administration on the oral mucosa. Physico-chemical and structural characterization was achieved by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Pharmacotechnical evaluation (consisting of the measurement of specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) proved that F-UBAs are suitable for oral mucosal administration. The brine shrimp lethality (BSL) assay was the F-UBA cytotoxicity prescreen. Cellular oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBA in blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line were investigated through complex flow cytometry analyses. Moreover, F-UBA influence on both cell type division and proliferation was determined. Finally, using the resazurin-based 96-well plate microdilution method, the F-UBA antimicrobial potential was explored against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019. The results revealed that each UBA-loaded film contains 175 µg dry extract with a usnic acid (UA) content of 42.32 µg. F-UBAs are very thin (0.060 ± 0.002 mm), report a neutral pH (7.01 ± 0.01), a disintegration time of 146 ± 5.09 s, and an ex vivo mucoadhesion time of 85 ± 2.33 min, and they show a swelling ratio after 6 h of 211 ± 4.31%. They are suitable for topical administration on the oral mucosa. Like UA, they act on CLS-354 tumor cells, considerably increasing cellular oxidative stress, nuclear condensation, and autophagy and inducing cell cycle arrest in G0/G1. The F-UBAs inhibited the bacterial and fungal strains in a dose-dependent manner; they showed similar effects on both Candida sp. and higher inhibitory activity against P. aeruginosa than S. aureus. All these properties lead to considering the UBA-loaded mucoadhesive oral films suitable for potential application as a complementary therapy in OSCC.

3.
Pharmaceutics ; 14(9)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36145557

RESUMEN

Medical research explores plant extracts' properties to obtain potential anticancer drugs. The present study aims to formulate, develop, and characterize the bioadhesive oral films containing Usnea barbata (L.) dry ethanol extract (F-UBE-HPC) and to investigate their anticancer potential for possible use in oral cancer therapy. The physicochemical and morphological properties of the bioadhesive oral films were analyzed through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), thermogravimetric analysis (TG), and X-ray diffraction techniques. Pharmacotechnical evaluation (consisting of the measurement of the specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) completed the bioadhesive films' analysis. Next, oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBE-HPC in normal blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line and its influence on both cell types' division and proliferation was evaluated. The results reveal that each F-UBE-HPC contains 0.330 mg dry extract with a usnic acid (UA) content of 0.036 mg. The bioadhesive oral films are thin (0.093 ± 0.002 mm), reveal a neutral pH (7.10 ± 0.02), a disintegration time of 118 ± 3.16 s, an ex vivo bioadhesion time of 98 ± 3.58 min, and show a swelling ratio after 6 h of 289 ± 5.82%, being suitable for application on the oral mucosa. They displayed in vitro anticancer activity on CLS-354 tumor cells. By considerably increasing cellular oxidative stress and caspase 3/7 activity, they triggered apoptotic processes in oral cancer cells, inducing high levels of nuclear condensation and lysosomal activity, cell cycle arrest in G0/G1, and blocking DNA synthesis. All these properties lead to considering the UBE-loaded bioadhesive oral films suitable for potential application as a complementary therapy in oral cancer.

4.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009320

RESUMEN

Usnea lichens are known for their beneficial pharmacological effects with potential applications in oral medicine. This study aims to investigate the extract of Usnea barbata (L.) Weber ex F.H. Wigg from the Calimani Mountains in canola oil as an oral pharmaceutical formulation. In the present work, bioadhesive oral films (F-UBO) with U. barbata extract in canola oil (UBO) were formulated, characterized, and evaluated, evidencing their pharmacological potential. The UBO-loaded films were analyzed using standard methods regarding physicochemical and pharmacotechnical characteristics to verify their suitability for topical administration on the oral mucosa. F-UBO suitability confirmation allowed for the investigation of antimicrobial and anticancer potential. The antimicrobial properties against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 were evaluated by a resazurin-based 96-well plate microdilution method. The brine shrimp lethality assay (BSL assay) was the animal model cytotoxicity prescreen, followed by flow cytometry analyses on normal blood cells and oral epithelial squamous cell carcinoma CLS-354 cell line, determining cellular apoptosis, caspase-3/7 activity, nuclear condensation and lysosomal activity, oxidative stress, cell cycle, and cell proliferation. The results indicate that a UBO-loaded bioadhesive film's weight is 63 ± 1.79 mg. It contains 315 µg UBO, has a pH = 6.97 ± 0.01, a disintegration time of 124 ± 3.67 s, and a bioadhesion time of 86 ± 4.12 min, being suitable for topical administration on the oral mucosa. F-UBO showed moderate dose-dependent inhibitory effects on the growth of both bacterial and fungal strains. Moreover, in CLS-354 tumor cells, F-UBO increased oxidative stress, diminished DNA synthesis, and induced cell cycle arrest in G0/G1. All these properties led to considering UBO-loaded bioadhesive oral films as a suitable phytotherapeutic formulation with potential application in oral infections and neoplasia.

5.
Int J Biol Macromol ; 211: 410-424, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35569685

RESUMEN

A facile, green synthesis methodology to obtain zinc oxide nanoparticles using three polysaccharide gums (Acacia gum, Guar gum and Xanthan gum) of biological origin was developed. Subsequently, biosynthesized zinc oxide nanoparticles were incorporated into a sustainable chitosan hydrogel matrix functionalized with propolis extract. This study has revealed that the selected polysaccharides as chelates represents a suitable approach to synthesize ZnO nanoparticles of particular interest with controlled morphology. The formation of ZnO nanoparticles using polysaccharide gums was confirmed by FTIR, XRD, UV-Vis spectroscopy, thermal analysis, SEM, Raman and photoluminescence spectroscopies. The rheological behaviour of obtained hydrogels was evaluated. The AFM studies demonstrate that all synthesized chitosan incorporated ZnO composites hydrogels functionalized with propolis extract exhibit corrugated topographies. The present study highlights the possible incorporation of various guest molecules into hydrogel matrix due to its tuneable morphologies. The obtained hydrogel composites were cytocompatible in L929 fibroblast cell culture, in a range of concentrations between 50 and 1000 µg/mL, as assessed by MTT, LDH and Live/Dead double staining assays. By enhancing the biological properties, these novel green hydrogels show attractive superior performance in a wide concentration range to develop future in vivo suitable natural platforms as effective delivery systems of pharmacologic agents for biomedical applications.


Asunto(s)
Quitosano , Própolis , Óxido de Zinc , Materiales Biocompatibles , Quitosano/química , Hidrogeles/química , Extractos Vegetales/química , Polisacáridos/farmacología , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA