RESUMEN
Allergy is an immunological disorder of the upper airways, lung, skin, and the gut with a growing prevalence over the last decades in Western countries. Atopy, the genetic predisposition for allergy, is strongly dependent on familial inheritance and environmental factors. These observations call for predictive markers of progression from atopy to allergy, a prerequisite to any active intervention in neonates and children (prophylactic interventions/primary prevention) or in adults (immunomodulatory interventions/secondary prevention). In an attempt to identify early biomarkers of the "atopic march" using minimally invasive sampling, CD4+ T cells from 20 adult volunteers (10 healthy and 10 with respiratory allergies) were isolated and quantitatively analyzed and their proteomes were compared in and out of pollen season (± antigen exposure). The proteome study based on high-resolution 2D gel electrophoresis revealed three candidate protein markers that distinguish the CD4+ T cell proteomes of normal from allergic individuals when sampled out of pollen season, namely Talin 1, Nipsnap homologue 3A, and Glutamate-cysteine ligase regulatory protein. Three proteins were found differentially expressed between the CD4+ T cell proteomes of normal and allergic subjects when sampled during pollen season: carbonyl reductase, glutathione S-transferase ω 1, and 2,4-dienoyl-CoA reductase. The results were partly validated by Western blotting.
Asunto(s)
Alérgenos/inmunología , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/inmunología , Polen/inmunología , Proteómica/métodos , Rinitis Alérgica Estacional/inmunología , Adulto , Femenino , Humanos , Hipersensibilidad/inmunología , Datos de Secuencia Molecular , Proteoma/análisis , Adulto JovenRESUMEN
Biodegradable microspheres may represent a potential tool for the delivery of combination vaccines. We demonstrate strong immunogenicity of five co-encapsulated antigens after a single subcutaneous inoculation in guinea pigs. Tetanus- and diphtheria-specific antibodies were not significantly affected by the presence of either antigen or by the presence of pertussis or Haemophilus influenzae type b (Hib) antigens. Microsphere formulations gave better protection against diphtheria toxin than did two injections of a licensed tetravalent vaccine. Finally, a synthetic malaria peptide antigen (PfCS) also encapsulated in PLGA microspheres increased diphtheria and tetanus-specific immunity and improved protection against diphtheria. These findings demonstrate the potential of microspheres as an alternative and promising strategy for combination vaccines with a further aptitude in reducing the number of inoculations required to gain functional immunity.
Asunto(s)
Inmunización/métodos , Vacunas contra la Malaria , Microesferas , Vacunas Combinadas/inmunología , Animales , Anticuerpos Antibacterianos/análisis , Especificidad de Anticuerpos/inmunología , Antígenos Bacterianos/inmunología , Biodegradación Ambiental , Toxina Diftérica/inmunología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Cobayas , Haemophilus influenzae tipo b/inmunología , Humanos , Lactante , Inyecciones Subcutáneas , Ácido Láctico/química , Ratones , Pruebas de Neutralización/métodos , Péptidos/inmunología , Plasmodium falciparum/inmunología , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/química , Vacunas Combinadas/administración & dosificación , Vacunas Sintéticas/inmunologíaRESUMEN
The goal of this project was the evaluation of a novel immunomodulatory adjuvant for human use, OM-174, which is a soluble adjuvant derived from Escherichia coli lipid A. For this study, we used a synthetic peptide, known for its safety and reproducibility and the murine model of BALB/c mice. The long peptide (PbCS 242-310) used corresponds to the C-terminal region of the circumsporozoite protein (CSP) that is the major protein on the surface of Plasmodium sporozoites. Subcutaneous injections of PbCS 242-310 in combination with soluble adjuvant OM-174 induced long lasting peptide-specific antibody titres comparable to those obtained by immunization with incomplete Freund's adjuvant (IFA). The ex vivo evaluation of the CD8(+) T cell response by IFN-gamma ELISPOT assay revealed that the injection of polypeptide with OM-174 adjuvant induced, compared to IFA, a similar and an eight-fold increased frequency of peptide-specific lymphocytes in the draining lymph-nodes and in the spleen, respectively. The CD8(+) T-cells are specific for the sequence PbCS 245-253, a well-known H-2K(d)-restricted CTL epitope, and are cytotoxic as shown in a chromium release assay. Immunization of BALB/c mice with this polypeptide in combination with adjuvant OM-174 conferred a protection after challenge with live Plasmodium berghei sporozoites.The strong antibody and CTL responses observed to a synthetic peptide in mice, the safety profile of the adjuvant and its extensive physico-chemical characterization suggest that OM-174 has a potential use in vaccine formulations for humans.