Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38534346

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is associated with exercise intolerance due to alterations in the skeletal muscle (SKM). Leucine supplementation is known to alter the anabolic/catabolic balance and to improve mitochondrial function. Thus, we investigated the effect of leucine supplementation in both a primary and a secondary prevention approach on SKM function and factors modulating muscle function in an established HFpEF rat model. Female ZSF1 obese rats were randomized to an untreated, a primary prevention, and a secondary prevention group. For primary prevention, leucine supplementation was started before the onset of HFpEF (8 weeks of age) and for secondary prevention, leucine supplementation was started after the onset of HFpEF (20 weeks of age). SKM function was assessed at an age of 32 weeks, and SKM tissue was collected for the assessment of mitochondrial function and histological and molecular analyses. Leucine supplementation prevented the development of SKM dysfunction whereas it could not reverse it. In the primary prevention group, mitochondrial function improved and higher expressions of mitofilin, Mfn-2, Fis1, and miCK were evident in SKM. The expression of UCP3 was reduced whereas the mitochondrial content and markers for catabolism (MuRF1, MAFBx), muscle cross-sectional area, and SKM mass did not change. Our data show that leucine supplementation prevented the development of skeletal muscle dysfunction in a rat model of HFpEF, which may be mediated by improving mitochondrial function through modulating energy transfer.


Asunto(s)
Insuficiencia Cardíaca , Animales , Femenino , Ratas , Suplementos Dietéticos , Insuficiencia Cardíaca/metabolismo , Leucina/metabolismo , Músculo Esquelético/metabolismo , Volumen Sistólico/fisiología
2.
Cells ; 12(21)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37947639

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with a high morbidity and mortality rate. Leucine supplementation has been demonstrated to attenuate cardiac dysfunction in animal models of cachexia and heart failure with reduced ejection fraction (HFrEF). So far, no data exist on leucine supplementation on cardiac function in HFpEF. Thus, the current study aimed to investigate the effect of leucine supplementation on myocardial function and key signaling pathways in an established HFpEF rat model. Female ZSF1 rats were randomized into three groups: Control (untreated lean rats), HFpEF (untreated obese rats), and HFpEF_Leu (obese rats receiving standard chow enriched with 3% leucine). Leucine supplementation started at 20 weeks of age after an established HFpEF was confirmed in obese rats. In all animals, cardiac function was assessed by echocardiography at baseline and throughout the experiment. At the age of 32 weeks, hemodynamics were measured invasively, and myocardial tissue was collected for assessment of mitochondrial function and for histological and molecular analyses. Leucine had already improved diastolic function after 4 weeks of treatment. This was accompanied by improved hemodynamics and reduced stiffness, as well as by reduced left ventricular fibrosis and hypertrophy. Cardiac mitochondrial respiratory function was improved by leucine without alteration of the cardiac mitochondrial content. Lastly, leucine supplementation suppressed the expression and nuclear localization of HDAC4 and was associated with Protein kinase A activation. Our data show that leucine supplementation improves diastolic function and decreases remodeling processes in a rat model of HFpEF. Beneficial effects were associated with HDAC4/TGF-ß1/Collagenase downregulation and indicate a potential use in the treatment of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Ratas , Femenino , Animales , Insuficiencia Cardíaca/metabolismo , Leucina/farmacología , Volumen Sistólico/fisiología , Obesidad/complicaciones , Suplementos Dietéticos , Histona Desacetilasas
3.
Artículo en Inglés | MEDLINE | ID: mdl-24963323

RESUMEN

A novel hand-held low-frequency magnetic stimulator (MagCell-SR) was tested for its ability to stimulate microcirculation in fingers of healthy volunteers. Blood flow during and after 5 minutes exposure was quantified using Laser Doppler Perfusion Imaging Technique. The device was positioned between the wrist and the dorsal part of the backhand. Because the increase in blood flow could be caused by a release of nitric oxide (NO) from the vascular endothelial cells we tested NO production with a fluorescence marker and quantified the measurements in cell cultures of human umbilical endothelial cells (HUVEC). Exposure increased blood flow significantly, persisted several minutes, and then disappeared gradually. In order to assess the effect of a static magnetic field, the measurements were also carried out with the device shutoff. Here, only a small increase in blood flow was noted. The application of the rotating MagCell-SR to the HUVEC cultures leads to a rapid onset and a significant increase of NO release after 15 minutes. Thus, frequencies between 4 and 12 Hz supplied by the device improve microcirculation significantly. Therefore, this device can be used in all clinical situations where an improvement of the microcirculation is useful like in chronic wound healing deficits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA