RESUMEN
OBJECTIVE: To evaluate the effects of fluoride (F) gels supplemented with micrometric or nano-sized sodium trimetaphosphate (TMPmicro and TMPnano, respectively) on the in vitro remineralization of caries-like lesions. METHODOLOGY: Bovine enamel subsurface lesions (n=168) were selected according to their surface hardness (SH) and randomly divided into seven groups (n=24/group): Placebo (without F/TMP), 4,500 ppm F (4500F), 4500F + 2.5% TMPnano (2.5% Nano), 4500F + 5% TMPnano (5% Nano), 4500F + 5% TMPmicro (5% Micro), 9,000 ppm F (9000F), and 12,300 ppm F (Acid gel). The gels were applied in a thin layer for one minute. Half of the blocks were subjected to pH cycling for six days, whereas the remaining specimens were used for loosely- (calcium fluoride; CaF2) and firmly-bound (fluorapatite; FA) fluoride analysis. The percentage of surface hardness recovery (%SHR), area of subsurface lesion (ΔKHN), CaF2, FA, calcium (Ca), and phosphorus (P) on/in enamel were determined. Data (log10-transformed) were subjected to ANOVA and the Student-Newman-Keuls' test (p<0.05). RESULTS: We observed a dose-response relation between F concentrations in the gels without TMP for %SHR and ΔKHN. The 2.5% Nano and 5% Micro reached similar %SHR when compared with 9000F and Acid gels. For ΔKHN, Placebo and 5% Nano gels had the highest values, and 5% Micro, 2.5% Nano, 9000F, and Acid gels, the lowest. All groups had similar retained CaF2 values, except for Placebo and Acid gel. We verified observed an increase in Ca concentrations in nano-sized TMP groups. Regarding P, TMP groups showed similar formation and retention to 9000F and Acid. CONCLUSION: Adding 2.5% nano-sized or 5% micrometric TMP to low-fluoride gels lead to enhanced in vitro remineralization of artificial caries lesions.
Asunto(s)
Caries Dental , Desmineralización Dental , Animales , Bovinos , Cariostáticos , Caries Dental/tratamiento farmacológico , Susceptibilidad a Caries Dentarias , Fluoruros/farmacología , Fluoruros/análisis , Geles , Dureza , Fluoruro de Sodio , Desmineralización Dental/tratamiento farmacológico , Remineralización DentalRESUMEN
Abstract Objective To evaluate the effects of fluoride (F) gels supplemented with micrometric or nano-sized sodium trimetaphosphate (TMPmicro and TMPnano, respectively) on the in vitro remineralization of caries-like lesions. Methodology Bovine enamel subsurface lesions (n=168) were selected according to their surface hardness (SH) and randomly divided into seven groups (n=24/group): Placebo (without F/TMP), 4,500 ppm F (4500F), 4500F + 2.5% TMPnano (2.5% Nano), 4500F + 5% TMPnano (5% Nano), 4500F + 5% TMPmicro (5% Micro), 9,000 ppm F (9000F), and 12,300 ppm F (Acid gel). The gels were applied in a thin layer for one minute. Half of the blocks were subjected to pH cycling for six days, whereas the remaining specimens were used for loosely- (calcium fluoride; CaF2) and firmly-bound (fluorapatite; FA) fluoride analysis. The percentage of surface hardness recovery (%SHR), area of subsurface lesion (ΔKHN), CaF2, FA, calcium (Ca), and phosphorus (P) on/in enamel were determined. Data (log10-transformed) were subjected to ANOVA and the Student-Newman-Keuls' test (p<0.05). Results We observed a dose-response relation between F concentrations in the gels without TMP for %SHR and ΔKHN. The 2.5% Nano and 5% Micro reached similar %SHR when compared with 9000F and Acid gels. For ΔKHN, Placebo and 5% Nano gels had the highest values, and 5% Micro, 2.5% Nano, 9000F, and Acid gels, the lowest. All groups had similar retained CaF2 values, except for Placebo and Acid gel. We verified observed an increase in Ca concentrations in nano-sized TMP groups. Regarding P, TMP groups showed similar formation and retention to 9000F and Acid. Conclusion Adding 2.5% nano-sized or 5% micrometric TMP to low-fluoride gels lead to enhanced in vitro remineralization of artificial caries lesions.
RESUMEN
OBJECTIVES: To evaluate in vitro the effect of neutral pH topical gels with reduced fluoride concentration (F), supplemented or not with sodium hexametaphosphate (HMP) on the remineralization of dental enamel, using a pH-cycling model. Materials and methods Bovine enamel blocks with caries-like lesions were randomly treated with five gels (nâ¯=â¯24/group): without F/HMP (Placebo); 4500â¯ppm F (4500F), 4500F plus 9% HMP (4500Fâ¯+â¯HMP); 9000â¯ppm F (9000F); and 12,300â¯ppm F (Acid gel). After pH-cycling, the percentage of surface hardness recovery (%SHR), integrated loss of subsurface hardness (ΔKHN), and concentrations of loosely- (CaF2) and firmly-bound (FA) fluoride formed and retained in/on enamel were determined. The results were analyzed by ANOVA followed by the Student-Newman-Keuls test (pâ¯<â¯0.001). RESULTS: The 4500Fâ¯+â¯HMP gel promoted the highest %SHR among all groups; the lowest ΔKHN was achieved by 4500Fâ¯+â¯HMP and Acid gel, without significant differences between these. The Acid gel group presented the highest CaF2 and FA formed and retained on/in enamel (pâ¯<â¯0.001). CONCLUSION: Based on the present results, the addition of 9% sodium hexametaphosphate to a gel with reduced fluoride concentration (4500F) was able to significantly enhance the remineralization of artificial carious lesions in vitro when compared to 4500F, reaching protective levels similar to an acidic formulation with â¼3-fold higher fluoride concentration.