Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuro Endocrinol Lett ; 36 Suppl 1: 13-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26757129

RESUMEN

OBJECTIVES: Balkan endemic nephropathy (BEN) is a chronic progressive fibrosis associated with upper urothelial carcinoma (UUC). Aetiology of BEN is still not fully explained. Although carcinogenic aristolochic acid I (AAI) was proven as the major cause of BEN/UUC, this nephropathy is considered to be multifactorial. Hence, we investigated whether other factors considered as potential causes of BEN [a mycotoxin ochratoxin A (OTA), Cd, Pb, Se and As ions and organic compounds (i.e. phthalates) released from lignite deposits in BEN areas] can influence detoxication of AAI, whose concentrations are crucial for BEN development. METHODS: Oxidation of AAI to 8-hydroxyaristolochic acid I (AAIa) in the presence of Cd, Pb, Se, As ions, dibutylphthalate (DBP), butylbenzylphthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP) and OTA by rat liver microsomes was determined by HPLC. RESULTS: Only OTA, cadmium and selenium ions, and BBP inhibited AAI oxidation by rat liver microsomes. These compounds also inhibited activities of CYP1A1 and/or CYP2C6/11 catalysing AAI demethylation in rat livers. Therefore, these CYP inhibitions can be responsible for a decrease in AAIa formation. When the combined effects of these compounds were investigated, the most efficient inhibition was caused by OTA combined with BBP and selenium ions. CONCLUSION: The results show low effects of BBP, cadmium and selenium ions, and/or their combinations on AAI detoxication. No effects were produced by the other metal ions (Pb, As) and phthalates DBP and DEHP. This finding suggests that they do not influence AAI-mediated BEN development. In contrast, OTA might influence this process, by inhibition of AAI detoxication.


Asunto(s)
Ácidos Aristolóquicos/metabolismo , Nefropatía de los Balcanes , Carcinógenos/metabolismo , Metales Pesados/farmacología , Ocratoxinas/farmacología , Oxidación-Reducción/efectos de los fármacos , Ácidos Ftálicos/farmacología , Animales , Arsénico/farmacología , Cadmio/farmacología , Cromatografía Líquida de Alta Presión , Iones , Plomo/farmacología , Microsomas Hepáticos/metabolismo , Ratas , Selenio/farmacología
2.
Neuro Endocrinol Lett ; 32 Suppl 1: 121-30, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22167220

RESUMEN

OBJECTIVE: The herbal drug aristolochic acid (AA) derived from Aristolochia species has been shown to be the cause of aristolochic acid nephropathy (AAN), Balkan endemic nephropathy (BEN) and their urothelial malignancies. One of the common features of AAN and BEN is that not all individuals exposed to AA suffer from nephropathy and tumor development. One cause for these different responses may be individual differences in the activities of the enzymes catalyzing the biotransformation of AA. Thus, the identification of enzymes principally involved in the metabolism of AAI, the major toxic component of AA, and detailed knowledge of their catalytic specificities is of major importance. Therefore, the present study has been designed to evaluate the cytochrome P450 (CYP)-mediated oxidative detoxification and reductive activation of AAI in a rat model. METHODS: DNA adduct formation was investigated by the nuclease P1 version of the 32P-postlabeling method. The CYP-mediated formation of a detoxication metabolite of AAI, 8-hydroxyaristolochic acid I (AAIa), in vitro in rat hepatic microsomes was determined by HPLC. RESULTS: Rat hepatic CYPs both detoxicate AAI by its oxidation to AAIa and reductively activate this carcinogen to a cyclic N-acylnitrenium ion forming AAI-DNA adducts in vitro. To define the role of hepatic CYPs in AAI demethylation and activation, the modulation of AAIa and AAI-DNA adduct formation by CYP inducers and selective CYP inhibitors was investigated. Based on these studies, we attribute the major role of CYP1A1 and 1A2 in AAI detoxication by its demethylation to AAIa, and, under hypoxic conditions also to AAI activation to species forming DNA adducts. Using microsomes of Baculovirus transfected insect cells (Supersomes™) containing recombinantly expressed rat CYPs, NADPH:CYP reductase and/or cytochrome b5, a major role of CYP1A1 and 1A2 in both reactions in vitro was confirmed. CONCLUSION: Based on the results found in this and former studies we propose that AAI activation and detoxication in rats are dictated mainly by AAI binding affinity to CYP1A1/2 or NADPH(P)H:quinone oxidoreductase, by their turnover and by the balance between oxidation and reduction of AAI by CYP1A.


Asunto(s)
Ácidos Aristolóquicos/farmacocinética , Sistema Enzimático del Citocromo P-450/fisiología , Hígado/efectos de los fármacos , Animales , Biotransformación , Carcinógenos/farmacocinética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2 , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromos/genética , Citocromos/metabolismo , Aductos de ADN/metabolismo , Evaluación Preclínica de Medicamentos , Inactivación Metabólica , Hígado/enzimología , Hígado/metabolismo , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Modelos Biológicos , Ratas , Ratas Wistar
3.
Chem Res Toxicol ; 24(10): 1710-9, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21932800

RESUMEN

Exposure to aristolochic acid I (AAI) is associated with aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial cancer. Individual differences in xenobiotic-metabolizing enzyme activities are likely to be a reason for interindividual susceptibility to AA-induced disease. We evaluated the reductive activation and oxidative detoxication of AAI by cytochrome P450 (P450) 1A1 and 1A2 using the Cyp1a1(-/-) and Cyp1a2(-/-) single-knockout and Cyp1a1/1a2(-/-) double-knockout mouse lines. Incubations with hepatic microsomes were also carried out in vitro. P450 1A1 and 1A2 were found to (i) activate AAI to form DNA adducts and (ii) detoxicate it to 8-hydroxyaristolochic acid I (AAIa). AAI-DNA adduct formation was significantly higher in all tissues of Cyp1a1/1a2(-/-) than Cyp1a(+/+) wild-type (WT) mice. AAI-DNA adduct levels were elevated only in selected tissues from Cyp1a1(-/-) versus Cyp1a2(-/-) mice, compared with those in WT mice. In hepatic microsomes, those from WT as well as Cyp1a1(-/-) and Cyp1a2(-/-) mice were able to detoxicate AAI to AAIa, whereas Cyp1a1/1a2(-/-) microsomes were less effective in catalyzing this reaction, confirming that both mouse P450 1A1 and 1A2 are both involved in AAI detoxication. Under hypoxic conditions, mouse P450 1A1 and 1A2 were capable of reducing AAI to form DNA adducts in hepatic microsomes; the major roles of P450 1A1 and 1A2 in AAI-DNA adduct formation were further confirmed using selective inhibitors. Our results suggest that, in addition to P450 1A1 and 1A2 expression levels in liver, in vivo oxygen concentration in specific tissues might affect the balance between AAI nitroreduction and demethylation, which in turn would influence tissue-specific toxicity or carcinogenicity.


Asunto(s)
Ácidos Aristolóquicos/farmacocinética , Carcinógenos/farmacocinética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Animales , Ácidos Aristolóquicos/orina , Nefropatía de los Balcanes/enzimología , Biotransformación , Citocromo P-450 CYP1A1/deficiencia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/deficiencia , Citocromo P-450 CYP1A2/genética , Aductos de ADN , Susceptibilidad a Enfermedades , Femenino , Riñón/enzimología , Hígado/enzimología , Pulmón/enzimología , Ratones , Ratones Noqueados , Microsomas/enzimología , Neoplasias Urológicas/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA