Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 29(11): 1733-1754, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38162914

RESUMEN

The two-component system (TCS) generally consists of three elements, namely the histidine kinase (HK), response regulator (RR), and histidine phosphotransfer (HP) gene families. This study aimed to assess the expression of TCS genes in P. vulgaris leaf tissue under salt and drought stress and perform a genome-wide analysis of TCS gene family members using bioinformatics methods. This study identified 67 PvTCS genes, including 10 PvHP, 38 PvRR, and 19 PvHK, in the bean genome. PvHK2 had the maximum number of amino acids with 1261, whilst PvHP8 had the lowest number with 87. In addition, their theoretical isoelectric points were between 4.56 (PvHP8) and 9.15 (PvPRR10). The majority of PvTCS genes are unstable. Phylogenetic analysis of TCS genes in A. thaliana, G. max, and bean found that PvTCS genes had close phylogenetic relationships with the genes of other plants. Segmental and tandem duplicate gene pairs were detected among the TCS genes and TCS genes have been subjected to purifying selection pressure in the evolutionary process. Furthermore, the TCS gene family, which has an important role in abiotic stress and hormonal responses in plants, was characterized for the first time in beans, and its expression of TCS genes in bean leaves under salt and drought stress was established using RNAseq and qRT-PCR analyses. The findings of this study will aid future functional and genomic studies by providing essential information about the members of the TCS gene family in beans. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01406-5.

2.
Anticancer Agents Med Chem ; 19(12): 1463-1472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30417797

RESUMEN

OBJECTIVE: Breast Cancer (BC) is the most common type of cancer diagnosed in women. A common treatment strategy for BC is still not available because of its molecular heterogeneity and resistance is developed in most of the patients through the course of treatment. Therefore, alternative medicine resources as being novel treatment options are needed to be used for the treatment of BC. Usnic Acid (UA) that is one of the secondary metabolites of lichens used for different purposes in the field of medicine and its anti-proliferative effect has been shown in certain cancer types, suggesting its potential use for the treatment. METHODS: Anti-proliferative effect of UA in BC cells (MDA-MB-231, MCF-7, BT-474) was identified through MTT analysis. Microarray analysis was performed in cells treated with the effective concentration of UA and UA-responsive miRNAs were detected. Their targets and the pathways that they involve were determined using a miRNA target prediction tool. RESULTS: Microarray experiments showed that 67 miRNAs were specifically responsive to UA in MDA-MB-231 cells while 15 and 8 were specific to BT-474 and MCF-7 cells, respectively. The miRNA targets were mostly found to play role in Hedgehog signaling pathway. TGF-Beta, MAPK and apoptosis pathways were also the prominent ones according to the miRNA enrichment analysis. CONCLUSION: The current study is important as being the first study in the literature which aimed to explore the UA related miRNAs, their targets and molecular pathways that may have roles in the BC. The results of pathway enrichment analysis and anti-proliferative effects of UA support the idea that UA might be used as a potential alternative therapeutic agent for BC treatment.


Asunto(s)
Antineoplásicos/farmacología , Benzofuranos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , MicroARNs/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzofuranos/síntesis química , Benzofuranos/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , MicroARNs/genética , Simulación del Acoplamiento Molecular , Estructura Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA