Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 13: 906551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844578

RESUMEN

Background: Zinc (Zn) is an essential trace element with high relevance for the immune system, and its deficiency is associated with elevated infection risk and severe disease course. The association of Zn status with the immune response to SARS-CoV-2 vaccination is unknown. Methods: A cohort of adult health care workers (n=126) received two doses of BNT162B2, and provided up to four serum samples over a time course of 6 months. Total SARS-CoV-2 IgG and neutralizing antibody potency was determined, along with total as well as free Zn concentrations. Results: The SARS-CoV-2 antibodies showed the expected rise in response to vaccination, and decreased toward the last sampling point, with highest levels measured three weeks after the second dose. Total serum Zn concentrations were relatively stable over time, and showed no significant association with SARS-CoV-2 antibodies. Baseline total serum Zn concentration and supplemental intake of Zn were both unrelated to the antibody response to SARS-CoV-2 vaccination. Time resolved analysis of free Zn indicated a similar dynamic as the humoral response. A positive correlation was observed between free Zn concentrations and both the induced antibodies and neutralizing antibody potency. Conclusion: While the biomarkers of Zn status and supplemental Zn intake appeared unrelated to the humoral immune response to SARS-CoV-2 vaccination, the observed correlation of free Zn to the induced antibodies indicates a diagnostic value of this novel biomarker for the immune system.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Vacunación , Zinc
2.
Redox Biol ; 50: 102242, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35139480

RESUMEN

The essential trace element selenium (Se) is of central importance for human health and particularly for a regular functioning of the immune system. In the context of the current pandemic, Se deficiency in patients with COVID-19 correlated with disease severity and mortality risk. Selenium has been reported to be associated with the immune response following vaccination, but it is unknown whether this also applies to SARS-CoV-2 vaccines. In this observational study, adult health care workers (n = 126) who received two consecutive anti-SARS-CoV-2 vaccinations by BNT162b2 were followed for up to 24 weeks, with blood samples collected at the first and second dose and at three and 21 weeks after the second dose. Serum SARS-CoV-2 IgG titres, neutralising antibody potency, total Se and selenoprotein P concentrations, and glutathione peroxidase 3 activity were quantified. All three biomarkers of Se status were significantly correlated at all the time points, and participants who reported supplemental Se intake displayed higher Se concentrations. SARS-CoV-2 IgG titres and neutralising potency were highest three weeks after the second dose and decreased towards the last sampling point. The humoral immune response was not related to any of the three Se status biomarkers. Supplemental Se intake had no effect at any time point on the vaccination response as measured by serum SARS-CoV-2 IgG levels or neutralising potency. Overall, no association was found between Se status or supplemental Se intake and humoral immune response to COVID-19 mRNA vaccination.


Asunto(s)
COVID-19 , Selenio , Adulto , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Inmunidad Humoral , ARN Mensajero , SARS-CoV-2 , Vacunación
3.
Nutrients ; 13(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072977

RESUMEN

The trace element copper (Cu) is part of our nutrition and essentially needed for several cuproenzymes that control redox status and support the immune system. In blood, the ferroxidase ceruloplasmin (CP) accounts for the majority of circulating Cu and serves as transport protein. Both Cu and CP behave as positive, whereas serum selenium (Se) and its transporter selenoprotein P (SELENOP) behave as negative acute phase reactants. In view that coronavirus disease (COVID-19) causes systemic inflammation, we hypothesized that biomarkers of Cu and Se status are regulated inversely, in relation to disease severity and mortality risk. Serum samples from COVID-19 patients were analysed for Cu by total reflection X-ray fluorescence and CP was quantified by a validated sandwich ELISA. The two Cu biomarkers correlated positively in serum from patients with COVID-19 (R = 0.42, p < 0.001). Surviving patients showed higher mean serum Cu and CP concentrations in comparison to non-survivors ([mean+/-SEM], Cu; 1475.9+/-22.7 vs. 1317.9+/-43.9 µg/L; p < 0.001, CP; 547.2.5 +/- 19.5 vs. 438.8+/-32.9 mg/L, p = 0.086). In contrast to expectations, total serum Cu and Se concentrations displayed a positive linear correlation in the patient samples analysed (R = 0.23, p = 0.003). Serum CP and SELENOP levels were not interrelated. Applying receiver operating characteristics (ROC) curve analysis, the combination of Cu and SELENOP with age outperformed other combinations of parameters for predicting risk of death, yielding an AUC of 95.0%. We conclude that the alterations in serum biomarkers of Cu and Se status in COVID-19 are not compatible with a simple acute phase response, and that serum Cu and SELENOP levels contribute to a good prediction of survival. Adjuvant supplementation in patients with diagnostically proven deficits in Cu or Se may positively influence disease course, as both increase in survivors and are of crucial importance for the immune response and antioxidative defence systems.


Asunto(s)
COVID-19/sangre , COVID-19/mortalidad , Cobre/sangre , SARS-CoV-2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios Transversales , Supervivencia sin Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Selenio/sangre , Selenoproteína P/sangre , Tasa de Supervivencia
4.
Redox Biol ; 38: 101764, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33126054

RESUMEN

SARS-CoV-2 infections cause the current coronavirus disease (COVID-19) pandemic and challenge the immune system with ongoing inflammation. Several redox-relevant micronutrients are known to contribute to an adequate immune response, including the essential trace elements zinc (Zn) and selenium (Se). In this study, we tested the hypothesis that COVID-19 patients are characterised by Zn deficiency and that Zn status provides prognostic information. Serum Zn was determined in serum samples (n = 171) collected consecutively from patients surviving COVID-19 (n = 29) or non-survivors (n = 6). Data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study were used for comparison. Zn concentrations in patient samples were low as compared to healthy subjects (mean ± SD; 717.4 ± 246.2 vs 975.7 ± 294.0 µg/L, P < 0.0001). The majority of serum samples collected at different time points from the non-survivors (25/34, i.e., 73.5%) and almost half of the samples collected from the survivors (56/137, i.e., 40.9%) were below the threshold for Zn deficiency, i.e., below 638.7 µg/L (the 2.5th percentile in the EPIC cohort). In view that the Se status biomarker and Se transporter selenoprotein P (SELENOP) is also particularly low in COVID-19, we tested the prevalence of a combined deficit, i.e., serum Zn below 638.7 µg/L and serum SELENOP below 2.56 mg/L. This combined deficit was observed in 0.15% of samples in the EPIC cohort of healthy subjects, in 19.7% of the samples collected from the surviving COVID-19 patients and in 50.0% of samples from the non-survivors. Accordingly, the composite biomarker (SELENOP and Zn with age) proved as a reliable indicator of survival in COVID-19 by receiver operating characteristic (ROC) curve analysis, yielding an area under the curve (AUC) of 94.42%. We conclude that Zn and SELENOP status within the reference ranges indicate high survival odds in COVID-19, and assume that correcting a diagnostically proven deficit in Se and/or Zn by a personalised supplementation may support convalescence.


Asunto(s)
COVID-19/sangre , COVID-19/mortalidad , Selectina-P/sangre , SARS-CoV-2/metabolismo , Zinc/sangre , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , Estudios Transversales , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Tasa de Supervivencia
5.
Nutrients ; 12(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708526

RESUMEN

SARS-CoV-2 infections underlie the current coronavirus disease (COVID-19) pandemic and are causative for a high death toll particularly among elderly subjects and those with comorbidities. Selenium (Se) is an essential trace element of high importance for human health and particularly for a well-balanced immune response. The mortality risk from a severe disease like sepsis or polytrauma is inversely related to Se status. We hypothesized that this relation also applies to COVID-19. Serum samples (n = 166) from COVID-19 patients (n = 33) were collected consecutively and analyzed for total Se by X-ray fluorescence and selenoprotein P (SELENOP) by a validated ELISA. Both biomarkers showed the expected strong correlation (r = 0.7758, p < 0.001), pointing to an insufficient Se availability for optimal selenoprotein expression. In comparison with reference data from a European cross-sectional analysis (EPIC, n = 1915), the patients showed a pronounced deficit in total serum Se (mean ± SD, 50.8 ± 15.7 vs. 84.4 ± 23.4 µg/L) and SELENOP (3.0 ± 1.4 vs. 4.3 ± 1.0 mg/L) concentrations. A Se status below the 2.5th percentile of the reference population, i.e., [Se] < 45.7 µg/L and [SELENOP] < 2.56 mg/L, was present in 43.4% and 39.2% of COVID samples, respectively. The Se status was significantly higher in samples from surviving COVID patients as compared with non-survivors (Se; 53.3 ± 16.2 vs. 40.8 ± 8.1 µg/L, SELENOP; 3.3 ± 1.3 vs. 2.1 ± 0.9 mg/L), recovering with time in survivors while remaining low or even declining in non-survivors. We conclude that Se status analysis in COVID patients provides diagnostic information. However, causality remains unknown due to the observational nature of this study. Nevertheless, the findings strengthen the notion of a relevant role of Se for COVID convalescence and support the discussion on adjuvant Se supplementation in severely diseased and Se-deficient patients.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/mortalidad , Neumonía Viral/mortalidad , Selenio/deficiencia , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19 , Infecciones por Coronavirus/epidemiología , Estudios Transversales , Femenino , Alemania/epidemiología , Glutatión Peroxidasa/sangre , Humanos , Masculino , Persona de Mediana Edad , Estado Nutricional , Pandemias , Neumonía Viral/epidemiología , Pronóstico , SARS-CoV-2 , Selenio/sangre , Selenoproteína P/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA