Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396988

RESUMEN

Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aß), and Aß-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aß, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.


Asunto(s)
Enfermedad de Alzheimer , Antioxidantes , Extractos Vegetales , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
2.
Drug Des Devel Ther ; 18: 549-566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419811

RESUMEN

Introduction: Tacrine, an FDA-approved acetylcholinesterase inhibitor, has shown efficacy in treating Alzheimer's disease, but its clinical use is limited by hepatotoxicity. This study investigates the protective effects of red ginseng against tacrine-induced hepatotoxicity, focusing on oxidative stress. Methods: A network depicting the interaction between compounds and targets was constructed for RG. Effect of RG was determined by MTT and FACS analysis with cells stained by rhodamine 123. Proteins were extracted and subjected to immunoblotting for apoptosis-related proteins. Results: The outcomes of the network analysis revealed a significant association, with 20 out of 82 identified primary RG targets aligning with those involved in oxidative liver damage including notable interactions within the AMPK pathway. in vitro experiments showed that RG, particularly at 1000µg/mL, mitigated tacrine-induced apoptosis and mitochondrial damage, while activating the LKB1-mediated AMPK pathway and Hippo-Yap signaling. In mice, RG also protected the liver injury induced by tacrine, as similar protective effects to silymarin, a well-known drug for liver toxicity protection. Discussion: Our study reveals the potential of RG in mitigating tacrine-induced hepatotoxicity, suggesting the administration of natural products like RG to reduce toxicity in Alzheimer's disease treatment.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad Hepática Inducida por Sustancias y Drogas , Panax , Ratones , Animales , Tacrina/farmacología , Tacrina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa/metabolismo , Farmacología en Red , Proteínas Quinasas Activadas por AMP , Inhibidores de la Colinesterasa/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
3.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069356

RESUMEN

Forsythiaside A (FA) is an active constituent isolated from Forsythia suspensa, a beneficial herb used in traditional medicine known for its antioxidant and anti-inflammatory properties. Although various studies have suggested that FA has the protective effects, its impacts on arachidonic acid (AA) plus iron in vitro models and carbon tetrachloride (CCl4)-induced mouse liver damage in vivo have not been explored. In this study, HepG2 cells were subjected to AA + iron treatment to induce apoptosis and mitochondrial impairment and determine the molecular mechanisms. FA exhibited protective effects by inhibiting cell damage and reactive oxygen species (ROS) production induced by AA + iron, as assessed via immunoblot and flow cytometry analyses. Further molecular investigations revealed that FA resulted in the activation of extracellular-signal-related protein kinase (ERK), which subsequently triggered the activation of AMP-activated protein kinase (AMPK), a critical regulator of cellular oxidative stress. Additionally, FA modulated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which is a significant antioxidant transcription factor regulated by the AMPK pathway. For in vivo studies, mice were orally administered FA and then subjected to induction of CCl4-based hepatotoxicity. The protective effect of FA was confirmed via blood biochemistry and immunohistochemical analyses. In conclusion, our findings demonstrated the protective effects of FA against oxidative stress both in vitro and in vivo, thus indicating that FA is a potential candidate for liver protection. Our study sheds light on the mechanistic pathways involved in the antioxidant effects of FA, highlighting the hepatoprotective potential of naturally occurring compounds in traditional herbs, such as FA.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antioxidantes , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hierro/farmacología
4.
Antioxidants (Basel) ; 12(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37237962

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a global health problem that is closely associated with obesity and metabolic syndrome. Spatholobi caulis (SC) is a herbal medicine with potential hepatoprotective effects; however, its active compounds and underlying mechanisms have not been fully explored. In this study, we combined a multiscale network-level approach with experimental validation to investigate SC's antioxidant properties and their impact on NAFLD. Data collection and network construction were performed, and active compounds and key mechanisms were identified through multi-scale network analysis. Validation was conducted using in vitro steatotic hepatocyte models and in vivo high-fat diet-induced NAFLD models. Our findings revealed that SC treatment improved NAFLD by modulating multiple proteins and signaling pathways, including AMPK signaling pathways. Subsequent experiments showed that SC treatment reduced lipid accumulation and oxidative stress. We also validated SC's effects on AMPK and its crosstalk pathways, emphasizing their role in hepatoprotection. We predicted procyanidin B2 to be an active compound of SC and validated it using a lipogenesis in vitro model. Histological and biochemical analyses confirmed that SC ameliorated liver steatosis and inflammation in mice. This study presents SC's potential use in NAFLD treatment and introduces a novel approach for identifying and validating active compounds in herbal medicine.

5.
Free Radic Biol Med ; 199: 141-153, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841364

RESUMEN

Acute and chronic liver disease are global problems with high morbidity and mortality. Bupleuri Radix (BR) is an herbal medicine that has been prescribed empirically in traditional Asian medicine to modulate liver metabolism. However, its active compounds and therapeutic mechanisms remain unclear. Here, we integrated a network-based approach and experimental validation to elucidate BR's therapeutic potential in treating oxidative liver injury. Our approach incorporated data collection and network construction utilizing bioinformatics tools, and identified active compounds and key mechanisms based on the multiscale interactome. The proposed mechanisms were validated using an in vitro oxidative stress model and an in vivo carbon tetrachloride-induced model. We found that BR ameliorated the oxidative hepatic damage by acting on multiple proteins (STAT3, TNF, and BCL2) and signaling pathways (AMPK and Hippo signaling pathways). Subsequent in vitro experiments confirmed that BR significantly inhibited oxidative stress and mitochondrial damage. We further validated the effect of BR on the AMPK and Hippo-YAP pathways; a key mechanism for the antioxidant properties of BR. We prioritized the active compounds in BR based on a multiscale interactome-based approach, and further experiments revealed that saikosaponin A was a key active compound involved in hepatocyte protection (EC50 = 50 µM), similar to the result using metformin and 5-aminoimidazole-4-carboxamide ribonucleotide. Histochemistry and blood biochemistry established that BR significantly inhibited carbon tetrachloride-induced oxidative tissue damage in mice. Thus, BR can be used to develop novel therapeutics for oxidative liver injury. Moreover, we suggest a novel strategy to prioritize and validate the active compounds and key mechanisms of herbal medicine based on the multiscale interactome.


Asunto(s)
Medicamentos Herbarios Chinos , Animales , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Antioxidantes/farmacología , Proteínas Quinasas Activadas por AMP , Tetracloruro de Carbono , Hígado/metabolismo
6.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430207

RESUMEN

The liver is vulnerable to oxidative attacks from heavy metals, such as iron, as well as some drugs, including acetaminophen. It has been shown that enhanced oxidative stress in the liver leads to excessive ROS production and mitochondrial dysfunction, resulting in organ injury. The beneficial effects of Spatholobi Caulis (SC), a natural herbal medicine, include treating ischemic stroke, inhibiting tumor cell invasion, pro-angiogenic activities, and anti-inflammatory properties. Scientific studies on its effects against hepatotoxic reagents (e.g., iron and acetaminophen), as well as their underlying mechanisms, are insufficient. This study examined the antioxidant effects and mechanisms of SC in vitro and in vivo. In cells, the proinflammatory mediator, arachidonic acid (AA), plus iron, significantly induced an increase in ROS generation, the damage in mitochondrial membrane potential, and the resulting apoptosis, which were markedly blocked by SC. More importantly, SC affected the activation of AMP-activated protein kinase (AMPK)-related proteins, which were vital to regulating oxidative stress in cells. In addition, SC mediated the expression of Yes-associated protein (YAP)-related proteins. Among the active compounds in SC, the procyanidin B2, but not liquiritigenin, daidzein, and genistein, significantly inhibited the cytotoxicity induced by AA + iron, and activated the LKB1-AMPK pathway. In mice, the oral administration of SC alleviated the elevations of ALT and histological changes by the acetaminophen-induced liver injury. These results reveal the potential of SC and a key bioactive component, procyanidin B2, as antioxidant candidates for hepatoprotection.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antioxidantes , Ratones , Animales , Antioxidantes/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetaminofén , Ácido Araquidónico/farmacología , Hierro
7.
Molecules ; 27(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35335221

RESUMEN

Natural products and medicinal herbs have been used to treat various human diseases by regulating cellular functions and metabolic pathways. Angelica gigas NAKAI (AG) helps regulate pathological processes in some medical fields, including gastroenterology, gynecology, and neuropsychiatry. Although some papers have reported its diverse indications, the effects of AG against arachidonic acid (AA)+ iron and carbon tetrachloride (CCl4) have not been reported. In HepG2 cells, AA+ iron induced cellular apoptosis and mitochondrial damage, as assessed by mitochondrial membrane permeability (MMP) and the expression of apoptosis-related proteins. On the other hand, AG markedly inhibited these detrimental phenomena and reactive oxygen species (ROS) production induced by AA+ iron. AG activated the liver kinase B1 (LKB1)-dependent AMP-activated protein kinase (AMPK), which affected oxidative stress in the cells. Moreover, AG also regulated the expression of yes-associated protein (YAP) signaling as mediated by the AMPK pathways. In mice, an oral treatment of AG protected against liver toxicity induced by CCl4, as indicated by the plasma and histochemical parameters. Among the compounds in AG, decursin had antioxidant activity and affected the AMPK pathway. In conclusion, AG has antioxidant effects in vivo and in vitro, indicating that natural products such as AG could be potential candidate for the nutraceuticals to treat various disorders by regulating mitochondrial dysfunction and cellular metabolic pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Angelica , Proteínas Quinasas Activadas por AMP/metabolismo , Angelica/metabolismo , Animales , Antioxidantes/farmacología , Benzopiranos , Butiratos , Ratones
8.
PLoS One ; 13(11): e0207696, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30452471

RESUMEN

Stellaria dichotoma var. lanceolata (SdLv), a member of the Caryophyllaceae, is a traditional herbal medicine that has been used to treat fever, night sweats, and malaria in East Asia. Inflammation plays an essential role in both host defense and pathogenesis during infection by diverse intracellular pathogens. Herein, we showed that an herbal extract from SdLv effectively attenuated inflammatory responses from infection of Mycobacterium abscessus (Mab), but not Toxoplasma gondii (T. gondii). In primary murine macrophages, Mab infection resulted in the rapid activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK), as well as in the generation of proinflammatory cytokines, such as tumor necrosis factor α and interleukin-6, which were all significantly inhibited by pretreatment with SdLv. However, herbal extracts from Bupleurum chinense DC. (Buch) or Bupleurum falcatum L. (Bufa) did not affect M. abs-induced activation of proinflammatory responses. Importantly, we demonstrated that generation of intracellular reactive oxygen species, which are important signaling intermediaries in the activation of NF-κB and the MAPK signaling pathway, was rapidly increased in Mab-infected macrophages, and this was effectively suppressed by pretreatment with SdLv, but not Buch and Bufa. We further found that the treatment of Buch and Bufa, but not SdLv, led to the activation of NF-κB and the MAPK signaling pathway and the generation of intracellular reactive oxygen species. Moreover, oral administration of SdLv significantly reduced lethality in Mab-infected mice. Collectively, these results suggest the possible use of SdLv as an effective treatment for Mab infection.


Asunto(s)
Antiinflamatorios/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Extractos Vegetales/farmacología , Stellaria/química , Animales , Antiinflamatorios/química , Bupleurum/química , Línea Celular , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mycobacterium abscessus/efectos de los fármacos , FN-kappa B/metabolismo , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA