Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Parkinsonism Relat Disord ; 121: 106034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382401

RESUMEN

INTRODUCTION: Connector hubs are specialized brain regions that connect multiple brain networks and therefore have the potential to affect the functions of multiple systems. This study aims to examine the involvement of connector hub regions in essential tremor. METHODS: We examined whole-brain functional connectivity alterations across multiple brain networks in 27 patients with essential tremor and 27 age- and sex-matched healthy controls to identify affected hub regions using a network metric called functional connectivity overlap ratio estimated from resting-state functional MRI. We also evaluated the relationships of affected hubs with cognitive and tremor scores in all patients and with motor function improvement scores in 15 patients who underwent postoperative follow-up evaluations after focused ultrasound thalamotomy. RESULTS: We have identified affected connector hubs in the cerebellum and thalamus. Specifically, the dentate nucleus in the cerebellum and the dorsomedial thalamus exhibited more extensive connections with the sensorimotor network in patients. Moreover, the connections of the thalamic pulvinar with the visual network were also significantly widespread in the patient group. The connections of these connector hub regions with cognitive networks were negatively associated (FDR q < 0.05) with cognitive, tremor, and motor function improvement scores. CONCLUSION: In patients with essential tremor, connector hub regions within the cerebellum and thalamus exhibited widespread functional connections with sensorimotor and visual networks, leading to alternative pathways outside the classical tremor axis. Their connections with cognitive networks also affect patients' cognitive function.


Asunto(s)
Temblor Esencial , Humanos , Temblor Esencial/cirugía , Temblor , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Cerebelo/diagnóstico por imagen , Cognición
2.
J Neurosurg ; 138(2): 306-317, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35901706

RESUMEN

OBJECTIVE: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy ameliorates symptoms in patients with essential tremor (ET). How this treatment affects canonical brain networks has not been elucidated. The purpose of this study was to clarify changes of brain networks after MRgFUS thalamotomy in ET patients by analyzing resting-state networks (RSNs). METHODS: Fifteen patients with ET were included in this study. Left MRgFUS thalamotomy was performed in all cases, and MR images, including resting-state functional MRI (rsfMRI), were taken before and after surgery. MR images of 15 age- and sex-matched healthy controls (HCs) were also used for analysis. Using rsfMRI data, canonical RSNs were extracted by performing dual regression analysis, and the functional connectivity (FC) within respective networks was compared among pre-MRgFUS patients, post-MRgFUS patients, and HCs. The severity of tremor was evaluated using the Clinical Rating Scale for Tremor (CRST) score pre- and postoperatively, and its correlation with RSNs was examined. RESULTS: Preoperatively, ET patients showed a significant decrease in FC in the sensorimotor network (SMN), primary visual network (VN), and visuospatial network (VSN) compared with HCs. The decrease in FC in the SMN correlated with the severity of tremor. After MRgFUS thalamotomy, ET patients still exhibited a significant decrease in FC in a small area of the SMN, but they exhibited an increase in the cerebellar network (CN). In comparison between pre- and post-MRgFUS patients, the FC in the SMN and the VSN significantly increased after treatment. Quantitative evaluation of the FCs in these three groups showed that the SMN and VSN increased postoperatively and demonstrated a trend toward those of HCs. CONCLUSIONS: The SMN and CN, which are considered to be associated with the cerebello-thalamo-cortical loop, exhibited increased connectivity after MRgFUS thalamotomy. In addition, the FC of the visual network, which declined in ET patients compared with HCs, tended to normalize postoperatively. This could be related to the hypothesis that visual feedback is involved in tremor severity in ET patients. Overall, the analysis of the RSNs by rsfMRI reflected the pathophysiology with the intervention of MRgFUS thalamotomy in ET patients and demonstrated a possibility of a biomarker for successful treatment.


Asunto(s)
Temblor Esencial , Humanos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Temblor , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética
3.
Front Hum Neurosci ; 12: 158, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740302

RESUMEN

Motor imagery (MI), a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain-computer/brain-machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF) during training. The participants' performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.

4.
Psychiatry Res Neuroimaging ; 249: 91-6, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-26862057

RESUMEN

Neural models of major depressive disorder (MDD) posit that over-response of components of the brain's salience network (SN) to negative stimuli plays a crucial role in the pathophysiology of MDD. In the present proof-of-concept study, we tested this formulation directly by examining the affective consequences of training depressed persons to down-regulate response of SN nodes to negative material. Ten participants in the real neurofeedback group saw, and attempted to learn to down-regulate, activity from an empirically identified node of the SN. Ten other participants engaged in an equivalent procedure with the exception that they saw SN-node neurofeedback indices from participants in the real neurofeedback group. Before and after scanning, all participants completed tasks assessing emotional responses to negative scenes and to negative and positive self-descriptive adjectives. Compared to participants in the sham-neurofeedback group, from pre- to post-training, participants in the real-neurofeedback group showed a greater decrease in SN-node response to negative stimuli, a greater decrease in self-reported emotional response to negative scenes, and a greater decrease in self-reported emotional response to negative self-descriptive adjectives. Our findings provide support for a neural formulation in which the SN plays a primary role in contributing to negative cognitive biases in MDD.


Asunto(s)
Afecto/fisiología , Mapeo Encefálico , Encéfalo/fisiopatología , Trastorno Depresivo Mayor/terapia , Neurorretroalimentación/métodos , Adulto , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/psicología , Femenino , Humanos , Imagen por Resonancia Magnética
5.
Neurosci Lett ; 520(2): 174-81, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22414861

RESUMEN

Current views recognize the brain as playing a pivotal role in the arising and maintenance of pain experience. Real-time fMRI (rtfMRI) feedback is a potential tool for pain modulation that directly targets the brain with the goal of restoring regulatory function. Though still relatively new, rtfMRI is a rapidly developing technology that has evolved in the last 15 years from simple proof of concept experiments to demonstrations of learned control of single and multiple brain areas. Numerous studies indicate rtfMRI feedback assisted control over specific brain areas may have applications including mood regulation, language processing, neurorehabilitation in stroke, enhancement of perception and learning, and pain management. We discuss in detail earlier work from our lab in which rtfMRI feedback was used to train both healthy controls and chronic pain patients to modulate anterior cingulate cortex (ACC) activation for the purposes of altering pain experience. Both groups improved in their ability to control ACC activation and modulate their pain with rtfMRI feedback training. Furthermore, the degree to which participants were able to modulate their pain correlated with the degree of control over ACC activation. We additionally review current advances in rtfMRI feedback, such as real-time pattern classification, that bring the technology closer to more comprehensive control over neural function. Finally, remaining methodological questions concerning the further development of rtfMRI feedback and its implications for the future of pain research are also discussed.


Asunto(s)
Encéfalo/fisiopatología , Imagen por Resonancia Magnética , Manejo del Dolor/métodos , Dolor/fisiopatología , Giro del Cíngulo/fisiopatología , Humanos , Neurorretroalimentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA