Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 80(8): 263, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37382659

RESUMEN

Bacterial vaginosis (BV) is a common infectious disease of the lower female reproductive tract, which is characterized by the augmentation of anaerobic bacteria. Gardnerella (G.) vaginalis plays a predominant role in BV recurrence relating to its higher virulence potential and biofilm formation ability. With the increased proportion of metronidazole-resistant G. vaginalis, controlling resistance to metronidazole and finding more effective drugs became a major concern. In this study, 30 clinical strains were cultured from the vaginal secretions of BV patients, followed by PCR and 16S rDNA sequencing identification. According to the CLSI guidelines for anaerobic drug sensitivity testing, 19 strains were identified as metronidazole-resistant (minimum inhibitory concentration, MIC ≥ 32 µg/mL), of which 4 clinical strains were observed to be strong biofilm producer and the final minimum biofilm inhibitory concentration (MBIC) of metronidazole was increased to 512 µg/mL. Sophora flavescens Alkaloids (SFAs), a traditional chinese medicine, could not only inhibit the growth of metronidazole-resistant G. vaginalis in planktonic (MIC: 0.3125-1.25 mg/mL), but also eliminate the biofilm formation (MBIC: 0.625-1.25 mg/mL). In the high-magnification scanning electron, it was observed that the morphology of biofilm changed from a thick to flaky shape and was nearly depleted. These results indicate that SFAs could not only inhibit the growth of metronidazole-resistant G. vaginalisin planktonic and biofilm levels, but also destroyed the biofilm morphology and microstructure, which may contribute to the prevention of BV recurrence.


Asunto(s)
Alcaloides , Antiinfecciosos , Vaginosis Bacteriana , Humanos , Femenino , Gardnerella vaginalis , Metronidazol/farmacología , Sophora flavescens , Alcaloides/farmacología , Biopelículas
2.
Front Pharmacol ; 13: 894149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924054

RESUMEN

Background and aims: Pelvic inflammatory disease (PID) is infection-induced inflammation of the female upper reproductive tract that results in high fever, ectopic pregnancy, infertility, and varying degrees of chronic pelvic pain. Recent clinical studies have shown that Kangfuxiaoyanshuan (KFXYS), a Traditional Chinese Medicine (TCM) formulation, may short the course of the disease and reduce the occurrence of PID sequelae, but its pharmacological action and potential mechanism have not been fully elucidated. Here, we aimed to investigate the therapeutic effects and mechanism of KFXYS in rats with PID. Materials and Methods: A PID rat model was constructed through endometrial mechanical injury and pathogen infection. The rectal temperature was measured during the 14-days course of treatment, and the white blood cell (WBC) count in the blood and the levels of cytokines (IFN-γ, IL-1ß, IL-4, TNF-α) in the serum were evaluated by ELISA. Hematoxylin and eosin (HE) staining was performed to analyze pathological changes, and transmission electron microscopy (TEM) was used to observe ultrastructural changes. The p-p65/p65 protein expression was evaluated by western blotting and the levels of MMP-2 and TGF-ß in adhesion tissues were assessed by immunohistochemistry. Results: KFXYS lowered the rectal temperature and the WBC counts in the blood in the acute stage of PID and alleviated inflammatory cell infiltration of the uterus, especially when combined with levofloxacin. KFXYS significantly decreased the levels of proinflammatory cytokines (IFN-γ, IL-1ß, IL-4) and adhesion-related factors (TNF-α) and protected the ultrastructure of endometrial epithelial cells. Mechanistically, KFXYS inhibited the NF-κB activation by decreasing phosphorylation of p65, thus the alleviation of inflammation further reduced the expression of TGF-ß and MMP-2, and inhibited the occurrence of uterine adhesions. Conclusion: These results revealed that KFXYS alleviated pelvic inflammation and effectively inhibits inflammation-associated adhesion, which indicated the potential role of KFXYS for treatment of PID and the prevention of PID sequelae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA